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CLASSIFICATION OF 3D TESSELLATIONS

I. SAXL, P. PONÍŽIL

Abstract. Classification of Voronoi tessellations generated by various point
processes is proposed and discussed.

Abstrakt. Klassifikaci� oblasteĭ Dirihle (Voronogo) generirovannyh
razliqnymi toqeqnymi processami predlozena i i diskutirovana.

1. Introduction

The broad collection of space-filling cell systems – tessellations – that are simulta-
neously covering and packing is encountered by examining grains of polycrystals.
Beside highly uniform systems with regular grains of similar size and shape, also
extremely locally inhomogeneous systems occur in practice as results of exaggerated
grain growth during certain thermal treatment of materials, in particular of steels.
They consist of huge isolated or contiguous cells separated by regions of very small
cells. Suitable stochastic models of such space-filling systems are convex polyhedral
Voronoi tessellations generated by various random or deterministic point proces-
ses [6]; they are called the tilings if the cells are translation equivalent. Frequently
encountered generating processes and shape properties of the corresponding tes-
sellations are reviewed in [13].
Simultaneously with a given spatial tessellation T , also the tessellations T ′, T ′′

induced by it in the whole system of section planes and lines are considered. In
practice, only the partial information contained in such sections is directly accessible
(crystals are usually opaque) and the data gathered by their examination serves as
the basis of any inference concerning the properties of the original spatial tessellation.
The elementary characteristics of tessellations are their intensities: the mean num-

bers of cells λ, profiles λ′ and chords (intercepts) λ′′ per unit volume (area, length)
of the embedding spaces. The detailed description of a tessellation is given by the
distributions of its cell characteristics. Size characteristics are cell volume v, surface
area s, mean breadth w (also the mean calliper or Feret diameter), perimeter p
(the total edge length), induced cell (profile) area v′, its perimeter s′ and chord (in-
tercept) length v′′. All size characteristics are homogeneous functions (of different
degree) of the intensities λ•, which are scale quantities only from the view point
of cell shape and arrangement. Clearly, Ev = 1/λ, Ev′ = 1/λ′, Ev′′ = 1/λ′′. The
important global characteristics of T are the areal intensity SV = λEs/2 (the mean
total cell boundary area per unit volume) and the length intensity LV = λEp/3 (the
mean total edge length per unit volume). The analogical length intensity of T ′ is
LA = λ′Es′/2 (the mean total length of profile boundaries per unit area).
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2. Previous attempts

Before describing the proposed classification scheme, the earlier attempts to cate-
gorize tessellations will be described. Herman, Wendrock & Stoyan [3] proposed to
classify planar tessellations by their coordinates {p,q} in the space of parameters of
selected two parametric unimodal distributions f(x;p,q) of the cell area a. The choice
of lognormal, Maxwell and γ distributions was examined for several tessellations ge-
nerated by hard-core (variable packing density) and cluster (variable cluster size and
mean cardinality) point processes. However, the choice of the distribution is rather
arbitrary and its parameters are only loosely connected with the geometric charac-
teristics of the examined tessellations. Further, it is clearly sufficient to classify only
the unit tessellations. Then certain fixed relation, p = p(q), between the distribution
parameters must hold and, consequently, all tessellations lie on the curve {q, p(q)}.
The standard γ−distribution with zero threshold, f(x) = pqxq−1 exp(−px)/Γ(q),
has the moments µ′

1 = q/p, µ2 = q/p2. Hence, all unit tessellations lie on the ray
p = q, q ≥ 0 and q = 1/var a, the point p = q = 1/0.28 describes the 2D Poisson-
Voronoi tessellation. Tessellations generated by clustered point patterns lie in the
interval p ∈ (0, 1/0.28) and those ones generated by hard- and pseudo-hard-core
patterns cover the interval p ∈ (1/0.28,∞); all tilings are gathered in the point at
infinity independently of their cell shape.
A similar attempt [7] (tessellations generated by Boolean cluster fields) was

based on the generalized γ-distribution proposed for the Poisson-Voronoi tessellation
(PVT) by Hinde and Miles [4]. Standard difficulties in the estimation of the γ-distri-
bution parameters produced a considerable scatter of results and their interpretation
was difficult. Moreover, in tessellations generated by point cluster processes with high
cluster cardinality and small cluster size, the distributions of all size characteristics
are multimodal [8], [9].
Lorz [5] proposed a non-parametric approach based on the coefficient of vari-

ation of the cell area CV a and on the mutual dependence between the quantiles
qα(a) vs q1−α(a) for planar sections of 3D tessellations. As in the previous case, the
direct interpretation of the obtained maps is rather obscure and the basic geometric
characteristics of tessellations remain in the background. However, the importance
of the coefficients of variation of the cell content has been properly recognized in
Lorz’ approach.
In order to stress the importance of the cell properties in the classification scheme,

Saxl and Ponížil [11] constructed maps with rectangular coordinates {EX,CV v},
where X were selected characteristics like s, w, cell shape properties etc. In such
maps, every tessellation was characterized by a point and tessellations of considered
types lie on the parametric curves {EX(t),CV v(t)} with t being a selected para-
meter of the generating point process – see Fig. 4 in [1] showing such a map for
3D tessellations generated by hard-core and pseudo-hard-core point. Unfortunately,
the numerous maps (for T as well as for T ′) were neither illustrative nor helpful in
the size and shape estimation.
An extensive need of versatile classification emerged in the connection with the

stereology of line and planar sections of simulated 3D tessellations. In the framework
of the long-term project, the database has been created of geometric cell properties
covering few hundreds of different systems. The fundamental requirement was to
include beside the original 3D tessellations also the corresponding 2D and 1D induced
descendants. Under such a condition, the solution was straightforward.
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3. Stereology of tessellations

The basic stereological formula relating intensities of the induced and the original
tessellations is [16]

(1) λ = λ′/E w = λ′′/E(s/4).

It can be formally rewritten as follows (for an extensive set of similar formulae
see [2]):

(2) λ = c′(T )λ′3/2 = c′′(T )λ′′3, λ′ = c(T )λ′′2,

where the scale independent factors related to cell shape and size distributions are

(3) c′(T ) = λ−1/2(Ew)−3/2, c′′(T ) = λ−2E(s/4)−3, c(T ) = (c′′(T )/c′(T ))2/3.

For unit tessellations, they simplify to power functions of the mean characteristics:

(4) c′(T ) = (Ew)−3/2, c′′(T ) = (Es/4)−3, c(T ) = Ew/(Es/4)2.

If the tessellation is normal (four cells meet in a vertex, three cells meet along an
edge and two neighbouring cells have a common boundary facet) then p = 12w and
c(T ) = LV /S2V .
Summarizing these results, Ew determines the intensity λ′ and equals LV /4 in the

case of a unit normal tessellation. Similarly, Es governs the intensity λ′′ and equals
SV /2 of unit tessellations. Hence Ew, Es are the basic characteristics describing
the global intensities SV , LV (in general, p ∝ w for any convex cell by Hadwiger
characterization theorem [16]) and, moreover, relating simply the intensities of the
original and induced tessellations. Then it is quite natural to base the classification
on them. On the other hand, neither λ nor Ew, Es can be inferred from the induced
tessellations without some additional assumptions.

4. w − s diagram and its construction

In the w − s diagram [14], any unit (i.e. Ev = 1 tessellation is characterized by
its mean cell characteristics Ew, Es in the {w, s} plane. Tessellations generated by
point fields Φ(t, u, . . . ) of the same type with parameters t, u, . . . are then repre-
sented by parametric curves {Ewu,...(t), Esu,...(t)}, where t is the chosen variable
parameter (e.g. the mean cluster cardinality N) and the remaining parameters (e.g.
the cluster size) are fixed. Other characteristics of the examined tessellations (shape
factors, quantiles, and, in particular, coefficients of variation of cell contents CV v,
CV v′, CV v′′, are evaluated simultaneously and can be plotted as labels in selected
curve points. Certain correlation between the tessellation position and its statistical
properties, (coefficients of variation of cell volume, profile area and chord length
etc.) is clearly apparent – see below. In view of the stereological relations between
the intensities of the original and induced tessellations, the diagram can also be
considered as the λ′ vs 4λ” diagram of unit 3D tessellations. The mean probabi-
lity that a cell is sampled by a section plane (line) is proportional to Ew(Es/4),
respectively. Consequently, the smaller are Ew,Es, the smaller number of cells is hit
by the section plane, the smaller are the intensities of the induced tessellations and
the higher must be the factors c′, c′′. Thus the w − s diagram can be considered as
a basic tool for understanding the stereological problems encountered in estimating
the properties of spatial tessellations from their induced tessellations.
The w−s diagram is constructed gradually in what follows. For the definitions of

various generating point processes and the basic tessellation properties see [16], [17].
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4.1. Tilings, random hard-core and pseudo-hard-core tessellations. Two
types of tilings have been considered:
a) tilings generated by cubic lattices, namely by the simple, body-centred and face
centred lattices (the prototiles are cube, regular tetrakaidecahedron and rhombic
dodecahedron, respectively). Their positions (denoted by diamond symbols) in the
w − s diagram are shown in Fig. 1.
b) monoclinic lattices with the angle α = π/3 and lattice constants {v, v, c = qv}
with the variable axes ratio q (the prototiles are regular hexagonal prisms – long
rods at high values of q and thin plates in the opposite case).
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Fig. 1 Central and right upper part of the w−s diagram: tilings and tessellations generated

by displaced lattices (see the text).

s w f g p/w CV v′

tetrakaidecahedron (cb) 5.315 1.336 0.800 0.868 12 0.532
rhombic dodecahedron (cf) 5.345 1.375 0.735 0.860 12 0.565
cube (cs) 6 1.5 0.566 0.724 12 0.642
hexagon. prism q = 0.01 5.08 59.9 0.0146 0.0229 8.01

0.1 2.43 14.2 0.133 0.198 8.13
1.51 1.430 5.73 0.653 0.775 9.34√
3 1.433 5.72 0.649 0.778 9.47
10. 2.19 7.43 0.181 0.525 11.1
100. 8.07 14.9 0.00363 0.186 11.9

Tab. 1 Selected properties of considered unit (v = 1) tilings.



272 I.Saxl, P. Ponížil

Important properties of such tilings are summarized in Tab. 1. Note the variable
p/w ratio in hexagonal tilings: horizontal four-valent edges prevail at low values
of q and the fibre process of tile edges has a pronounced planar anisotropy whereas
three-valent vertical edges are dominant at high values of q (linear anisotropy of
edges). In the w − s diagram – Fig. 1, hexagonal prismatic tilings are represented
by the v-shaped curve, plates with q = 1, 0.2 in its upper part and rods q = 5 in its
lower part are denoted by triangles.
w and s of isohedral tiles have lower bounds ((6/π)1/3and (36π)1/3) by the isope-

rimetric and Bierbach inequalities, resp., but no upper bounds and the right upper
part of the w − s diagram is filled by tilings with flattened or elongated cells. Iso-
hedral tiling by unit hexagonal prisms with the height to edge ratio q can serve as an
example: s = 2.7495(1 + 1.1547q)/q2/3 and w = 0.3637(3 + q)/q1/3. The minimum
values of w, s are attained near the tip of the v-shaped curve {w(q), s(q)} at q =

√
3

and q = 1.5, resp., and w, s → ∞ for q → 0 (hexagonal plates) as well as for q → ∞
(hexagonal rods). Hence c′, c′′ → 0 in the both limit cases, whereas c → 0 only at
q → 0 and c → 0.577 for q → ∞ (lower branch).
Curves {Ew(a),Es(a)}, a ∈ [0.005, 10], joining the tiling points cb,cf and cs with

the PVT point (denoted by the black circle in Fig. 1) describe the tessellations
generated by the corresponding Bookstein models [10] on the cubic lattices (called
also the displaced lattice processes because each lattice point is independently shifted
by a random vector ξ having a normal 3D distribution N(0,Ξ) with Ξ = a2I,
where I is a unit matrix) with the increasing standard deviation a. Note the slight
overshooting of the curves in the neighbourhood of the PVT point. Similarly, the
dashed curves joining the q = 0.2 and q = 5 points with the PVT point are generated
by the monoclinic displaced lattices (the range of a as above).
Tessellations generated by the full range of Matérn type I (MI, hard-core diameter

0 ≤ δ ≤ 0.34, maximum attained volume fraction of random sphere packing fmax =
0.04) and type II (MII, 0 ≤ δ ≤ 0.62, fmax = 0.125) processes and by the simple
sequential inhibition process (SSI, 0 ≤ δ ≤ 0.9, fmax = 0.38) [10] are shown in Fig. 2a
– the curves {Ew(δ),Es(δ)}. In spite of different definitions of the processes, the
positions of the tessellations generated by them and by the body-centred displaced
lattices nearly coincide.
Finally, the positions of the tessellations generated by the conditional Strauss

process [1] are presented in Fig. 2b. The generating processes at three choices of
the variable radius R = 0.72, 0.865 and 1.44 are examined at different values of
the interaction parameter γ – the curves {Ew(γ)R,Es(γ)R}, γ ∈ [0.01, 1] (the value
of γ = 1 corresponds to the Poisson point process, hence to the Poisson-Voronoi
tessellation). Note that again when R is close to the theoretical value of the hard-core
parameter for the densest spherical packing, then the positions of the tessellations at
decreasing γ closely follow the positions of the tessellations generated by displaced
body-centred lattices, and in this range also by the face-centred displaced lattices.
On the other hand, when R is considerably greater than the theoretical value, they
approach the region of flat and rod-like cells (higher values of Ew, Es).

4.2. Tessellation generated by point cluster fields. Two types of point clus-
ter fields have been considered: Bernoulli cluster fields as a generalization of the
Neyman-Scott process have been introduced in [15] and shortly described in [14].
The broad range of cluster cardinality has been examined: N ∈ [1, 999] for Poisson
globular (PG) clusters and N ∈ [1, 200] for Poisson spherical (PS) clusters. The
cluster diameter was δ = 0.01 in the units of the mean nearest neighbour distance of
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the parent Poisson point process, hence the clusters were small and only very rarely
overlapping. The w − s diagram of the tessellations generated by the Neyman-Scott
cluster field (the probability of cluster implantation into a parent point p = 1) is
shown in Fig. 3 – note the extreme range of the values of Ew,Es attained. The PG
tessellations are strictly bimodal whenever N exceeds 4; the position of the lower
value mode (corresponding to small inner cells [8], [9], [13]) of the cell volume dis-
tribution is nearly independent of N . PS tessellations are unimodal with wedge-,
rod- and plate-like cells. The difference between the the positions of the tilings by
hexagonal rods and PS tessellation is rather small (see the right upper corner of
Fig. 5 and compare Fig’s 1 and 3).
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For comparison, the position of the well-known Johnson-Mehl model [16] is shown.
The Poisson-Voronoi tessellation can be obtained by the simultaneous isotropic con-
stant rate growth of grains from point germs; the growth locally stops whenever
two nuclei meet, the process of germs is the stationary Poisson point process. The
same type of growth is assumed in the Johnson-Mehl model. However, the germs
are nucleated continually at the rate I = αtβ−1, starting at the time t = 0, β ≥ 0
is the model parameter; the Poisson-Voronoi tessellation corresponds to its lower
bound. The rejection rule is applied, namely the germs nucleated within an already
growing grain are not accepted. The cells are mildly non-convex, their size dispersion
increases with the growing parameter β: var v → ∞ for β → ∞. The whole range
0 ≤ β ≤ ∞ of the JM model is shown in Fig. 3.
The last examined component of the w − s diagram are tessellations generated

by the Bernoulli cluster fields with the implantation probability 0 ≤ p ≤ 1. Their
construction and the approximate calculation of their properties for small values
of the cluster diameter δ are described at length in [15]. For globular clusters, the
distributions of the cell volumes are trimodal (small inner and greater outer cells
generated by cluster points and huge cells of the cluster free points of the original
parent process points). As the mean value of the cluster cardinality N need not be
an integer in general, positions of such tessellations cover the whole area of the w−s
diagram lying below the curve describing the tessellations generated by the Neyman-
Scott fields of spherical and globular clusters. Selected theoretically calculated curves
{Ew(p)N ,Es(p)N}, p ∈ (0, 1) are shown in Fig. 4. The effect of increasing values of
δ on such curves, namely the gradual shrinkage of loops, is described in [14], [15].
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Fig. 5 The central part of the w − s diagram labelled by the values of the coefficient of

variation CV v′.

The characteristics of simulated tessellations can be found and the w−s diagrams
with various labels (tessellation parameters, coefficients of variation) interactively
constructed and downloaded at the Internet page

http://fyzika.ft.utb.cz/voronoi/

– see an example in Fig. 5.

4.3. General features of the w − s diagram. Tessellations formed by cells the
widths w(u) (recall that the width wC(u) of a convex body C is the distance of the
parallel support planes with the normal u) of which are only mildly dependent on
the orientation u of their support planes are called equiaxial; the common examples
are tessellations generated by displaced cubic lattices and PVT. Equiaxial tessellati-
ons with a moderate unimodal size dispersion of cell volumes are cumulated in the
neighbourhood of the PVT point {1.458, 5.821} and are suitable models of the cell
arrangement in living tissues as well as of grains in polycrystals of many face-centred
metals and alloys [19].
Figure 5 demonstrates that in this area of the w − s diagram, the lowest values

of the coefficients of variation of cell contents (volumes, areas lengths) are attained.
CV v has only one component describing the size distribution of cell volume; its
value is zero for all tilings. In the induced tessellations, also the variability of secti-
oning contributes to the values of CV v’ and CV v” whereas the original cell volume
dispersion is considerably obscured by the weighted profile sampling (planes sample
the cells by their widths, lines by their projection areas), the result of which is a
preferred sectioning of greater cells.
Tessellations with plate- or rod- or wedge-like cells and their mixtures with a

moderate cell volume dispersion fill the right upper corner of the w-s diagram and
there is no upper bound of w, s as it was already mentioned above.
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When moving from the PVT point down to the left lower corner, positions of
tessellations with wide and gradually more pronounced multimodal cell volume dis-
tributions are encountered (generating processes are Bernoulli globular cluster fields
with variable implantation probabilities p) and Johnson-Mehl model with the uni-
modal very wide cell volume distribution. In the relatively narrow wedge-shaped area
lying between the curves describing the Johnson-Mehl model and tessellations gene-
rated by Neyman-Scott globular cluster fields with very small value of the cluster size
δ are also the positions of tessellations generated by Bernoulli globular cluster fields
with higher values of δ. The tessellations of all these types are suitable models for
grains of various ferritic and austenitic steels after standard thermal treatment. Con-
sequently, the methods of grain size estimation used in technical practice are based
on the assumption that the tessellations characterized by the points {1.16, 4.84}
(U.S. Standards ASTM E112) or {1, 4.505} (Czech Standards ČSN 42 0462) are
suitable universally valid models (see the discussion in [12], [18], [19].
The whole area of the w− s diagram lying bellow the curves of the Johnson-Mehl

model and that one describing tessellations produced by Neyman-Scott spherical
cluster fields is occupied by tessellations generated by Bernoulli spherical cluster
fields with variable implantation probabilities p. They combine large equiaxial cells
generated by parent points without implanted cluster with small elongated or flat-
tened cells produced by spherical clusters that are responsible for rather high values
of Ew, Es even when the cell volume distribution is strictly bimodal and small cells
prevail. Grain size distributions and arrangement of this type can be found in ste-
els after a thermal treatment allowing an exaggerated growth of certain (primary
austenitic) grains [18].
When moving away from the central area of displaced cubic tessellations and

PVT, the values of the coefficients of variation of cell contents increases: slowly in
the direction of the right upper corner (the sectional component prevails) and quickly
in the all other directions (mainly due to the cell size dispersion component) – Fig. 5.
In particular, all coefficients have a pole in the β = ∞ point of the Johnson-Mehl
model. Along the loops describing tessellations generated by Bernoulli cluster fields,
they vary considerably and attain their maxima near the point p ≈ 0.5 [15].
Finally, it is proposed that the unoccupied part of the w−s plane in the presented

figures with arbitrary values of Ew and high values of Es represents non-convex
tessellations with corrugated – perhaps wavy or “fractal-like” – boundaries.

4.4. Applications. The straightforward application of the w − s diagram is the
grain size estimation from planar and line section of a 3D space-filling systems. By
combining the direct estimates of the intensities λ′, λ′′ and of CVv′, the approximate
location of the examined grain structure in the w − s diagram can be proposed and
the estimates of λ, CV v obtained. The procedure is demonstrated for computer
simulated tessellations in [12] and applied to real metallic polycrystals in [18], [19].
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