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STATISTICAL REGRESSION METHOD OF SHAPE ANALYSIS,

WITH APPLICATION TO CLASSIFICATION OF

CROSS-SECTIONS OF CARBON FIBERS

ALEŠ LINKA, PETR VOLF

Abstract. The contours of textile fibers cross-sections have as a rule the shape
of deformed circle. Unfolded contours can then be described as a smooth pe-
riodical curve contaminated with local nonregularities, and can therefore be
analyzed with the aid of the statistical regression model. The present paper
applies such an approach to the comparison of shapes of cross-sections for se-
veral types of carbon fibers. The corresponding regression curve is constructed
as the combination of trigonometric functions, its complexity is optimized by
methods of mathematical statistics. It is also shown, by random sampling, that
the parameters of the model correspond to different deformations of circular
contour. On this basis, the method is proposed for the discrimination between
the heat-treated and untreated fibers.

Rez�mз. V statьe predlagaets� metod statistiqeskogo analiza formy

2D obъзktov. Metod polьzuets� funkcionalьno� modelь� kontura

obъзkta posьle ego razvertki. Deformacia kontura opisana parame-

trami modeli. V kaqestve primera rexaets� zadaqa harakterizacii

i klassifikacii tekstilnyh volokon na osnove konturov ih seqeni�.

1. Introduction, mathematical analysis of shapes

The mathematical methods of analysis of shapes have, in recent decade, attracted
rather wide attention. The remarkable development has been achieved particularly in
the field of image processing, of stereology, and also in the area of stochastic models
and application of statistical data analysis. In the present paper we shall deal with
an application of statistical methods to the description and classification of shapes of
cross-sections of carbon fibers. The objective is to find the most informative features
of these shapes and to describe the differences between several types of fibers, namely
between the heat-treated and untreated ones.
The temperature exposition of fibers during technological processing of simple or

composite materials produces very often changes both in size and shape of their cross-
sections as a consequence of reorganization of their internal structure. Well known is
for instance the irreversible shrinkage of textile fibers by heating. This phenomenon
is observed also at high performance fibers used as composite reinforcement, for
example at carbon fibers, which are exposed to graphization temperature at about
2900 ◦C. In the case of carbon fibers the identification of these small changes may be
very difficult and the mathematical methods are the useful tool of such an analysis.

2000 Mathematics Subject Classification. 62H35 62P30.
Key words and phrases. Carbon fibers, cross-sections, analysis of shapes, statistical methods,

regression model.
The authors express their appreciation to Mrs. Bohumila Košková for providing the experimen-

tal data, which were obtained within Grant project No. 106/99/0096 of Grant Agency of Czech
Republic. The research has been supported by the project of GA ČR No. 106/01/0565.



Statistical regression method of shape analysis 217

Naturally, one of the main characteristics is the size of the cross-section. It can
be measured by the area, minimal or maximal distance of object’s points, mean
diameter, etc. Another set of characteristics describes typical features of the shape.
One of the most popular approaches suitable for the problem solved here is based
on the concept of deformable template model (Grenander, 1993). It assumes that
the object is a result of a (stochastic) deformation of a template and the aim is to
describe the deformation mechanism.
In the present paper, we shall use the statistical model describing the unfolded

contour of examined object (i.e. the cross-section of a fiber) via the regression model
r(u) = g(u) + ε, where u is the angle (from 0 to 2π), r(u) is the length of radius
from an appropriately chosen point c (a “center” of the object) to the edge, ε is
the random noise and g is the model function. Its form, resp. its parameters, are
expected to carry an important information on the shape of deformed object.
In the case considered here, such a ’regression-like’ description of the contours of

cross-sections is quite adequate because the shapes considered are actually flattened
circles (with additional more or less considerable nonregularities). That is why the
contours of fiber cross-sections can be unfolded to a curve – function. Such shapes
are sometimes called ’star-shaped’. It means that there exists at least one point c
inside the object such that the line segments connecting c with each point on the
contour are inside the object (see, for instance, Hobolth et al, 2000). Moreover, it will
be assumed that the point c can be chosen as the center of gravity of the considered
objects – cross-sections.
From what has been said it follows that we shall deal with planar objects, and

that the location or rotation of the object is not relevant to the purpose of our study,
at least in the present stage. For instance, when examining the fibers in a bundle,
one should consider the location, too, because the conditions in the center of the
bundle may differ significantly from the conditions at points close to its border.
In the follow-up, we shall first present the data, the cross-sections of carbon fibers

of two types, and we shall compare their magnitude. Then, the regression model of
unfolded contours of cross-sections will be formulated and analyzed. Finally, the
simulations will confirm the correspondence between the deformation of shapes and
the parameters of the model. We shall also mention the shape analysis method based
on the comparison of significant points selected on the object contour – so called
landmarks – by means of Procrust analysis.

2. The data, comparison of the magnitude of cross-sections

Two samples of cross-sections of carbon fibers were analyzed. Their images are on
Figure 1, they were obtained with the aid of a confocal microscope and CCD camera.
The cross-sections of the first type (a) are from the annealed (heat-treated) fibers,
the second type (b) is not annealed. We analyzed N1 = 16 items of the first type
and N2 = 14 of the second.
It is seen that the shapes have an approximately elliptical form, so that there is no

problem to establish their centers of gravity. Further, it is then possible to measure
the lengths of radii and to compute the average radius. For the purpose of the analysis
the contour of each cross-section was stored as a set of values {(xi, yi), i = 1, . . . , nj}
in a local coordinate system x, y, where j is the number of cross-section and nj ∼
2 · 102 points. The units used for xi, yi were the numbers of pixels in the image (one
unit = one pixel, in both x and y directions), while the magnitude (diameter) of the
real cross-sections was about 10µm. The gravity center cj = (cxj , cyj) of j-th object
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is given by cxj =
∑

xi/nj , cyj =
∑

yi/nj , coordinates w.r. to this new center are
x′

i = xi − cxj, y′
i = yi − cyj , the length of the radius connecting the center (now

(0, 0)) with the contour point (x′
i, y

′
i) is ri =

√

x′2
i − y′2

i and the corresponding angle
ui between the radius-vector and axis x covers the interval (0, 2π). More precisely,
ui = arc tg(y

′
i/x′

i), shifted by +π if xi < 0 and shifted by +2π for xi ≥ 0, y < 0.

(a) (b)

Fig. 1 The data – cross-sections of heat-treated (a) and untreated (b) carbon fibers.

Further, denote Rj =
∑nj

i=1 ri/nj the averaged radius of object j. In such a way

we obtained two sets of values R
(1)
j , j = 1, . . . , N1 and R

(2)
j , j = 1, . . . , N2 from the

first and second set of contours, respectively. Averaged radii Rj , taken as random
variables, are independent (they are computed at different objects). Moreover, in the
population of one type of objects, they are assumed to be identically distributed.
That is why the comparison of averaged radii of both types of cross-sections can be
accomplished with the aid of a simple two-sample statistical test.

2.1. The test for nonequal radii of shapes. The type of distribution of Rj is
not known, though we could use a proper version of the central limit theorem and
assume approximate normality. We have to take into account also the fact that as
the points of contours were selected rather close one to each other, ri for neighboring
i-s (at the same contour) were mutually dependent, so that Rj were averages from
mutually dependent variables. We shall return to that problem later, when dealing
with the regression model. At the present moment, this problem can be overcome by
the use of one from nonparametric two-sample tests, instead of the standard t-test.

Let us assume that the values R
(k)
j , k = 1, 2, j = 1, . . . , Nk, represent two random

variables R(1), R(2), resp., and let us consider the hypothesis H0 that R(1) does not
differ systematically from R(2), against the one-sided alternative H1 : R(1) < R(2).
For instance two-sample test of Wilcoxon based on the order statistics can be applied.

However, as all valuesR
(2)
j are greater than allR

(1)
j (it is also shown by the histogram

of values R
(k)
j on Figure 2), the rejection of H0 in favour of H1 is evident.
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Fig. 2 Histogram of mean radii of objects.
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Fig. 3 Example of unfolded contour data, with optimal model function.
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3. Regression model of unfolded contours

Let us first remove the influence of different lengths of radii, of each contour j, by
the transformation vi = ri/Rj − 1. Each contour is now represented by the data
{(ui, vi), i = 1, 2, . . . , nj}, where ui are angles from 0 to 2π and vi are ’normalized’
radii. Figure 3 (upper subplot, the point-wise curve) shows the example of unfolded
contour of one cross-section. It is seen that the curve has a periodic character –
similar to an unfolded ellipse with additional nonregularities. Therefore it is expected
that the combination of trigonometric functions will provide a good functional model
in this case. In the framework of nonlinear regression model vi = g(ui) + εi, let us,
for each (j-th) unfolded contour, consider the following linear model (i.e. linear with
respect to parameters):

vij = a0j +

K
∑

k=1

(akj sin(kuij) + bkj cos(kuij)) + εij . (1)

Such a model is quite frequently used in signal analysis, where the trigonometric
function is often combined with a trend function (linear or quadratic, for instance).
However, as it has already been noted, the points of contours were selected rather
close one to each other in original ’densely’ sampled data, so that εij for neighbo-
ring i’s (and the same j) were mutually dependent. The additional statistical analysis
revealed that this dependence can be well modeled as a linear autoregression of order
1 or 2. Optimal order of AR model has been determined with the aid of Schwarz BIC
criterion, a standard criterion used in this field of statistical methodology. However,
when the data were reduced, namely when only each 5-th point (ui, vi) of original
contour data was taken, the mutual dependence of neighboring points disappeared
practically. Namely, the regression model (1) was applied to the reduced data (now
the sample size of data for one contour was between 40 and 50). Then the residuas
estimating the departures εij were computed, and their mutual independence tested
by tests of randomness. More precisely, ’runs up and down’ and ’runs above and be-
low the median’ tests were used and the hypothesis of randomness was not rejected,
as a rule by any of tests.
Therefore, the regression model (1) has been fitted to reduced data. Then εij were

already regarded as mutually independent, centered, symmetric random variables,
identically distributed at least for each j. The parameters of the model were estima-
ted in a standard way, by the least squares method, which was accompanied by the
estimate of residual variance (of variables-noises εij)

σ̂2j =

nj
∑

i=1

(vij − ĝj(uij))
2/(nj − 2K − 1).

We should discuss also a rather important problem of optimal model complexity
(i. e. of optimal selection of K). One way indicating the non-significance of certain
parameters ak, bk can be based on the standard t-tests testing the hypothesis ak = 0
(resp. bk = 0) separately for each parameter. We actually use the normal approxi-
mation instead of the t-test, because, though we do not assume the normality of
noises εi, on the other side we deal with rather large sample sizes nj ’s, so that the
normal approximation is adequate. However, the Schwarz ‘BIC’ criterion was again
used as the main (though ad-hoc) criterion of optimal selection of K. Namely, we

selected such a model that ln σ̂j
2 − 2K lnnj/nj was minimal (where σ̂j

2 was the
estimate of residual variance). In the most cases, the optimal model had K = 3. In
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several instances, moreover, the t-tests denoted some coefficients as nonsignificant
so that the model could be further reduced.
Figure 3 shows one example of such a regression curve of order 3 (full line in

the upper plot) and also the sequence of residual values (lower plot). As the data
were shifted in such a way that the curve started from its maximum, even the models
using only the cosinus functions were quite good (mostly with optimal order K = 5).

Type 1: Type 2:

Parameter Mean STD Median Mean STD Median

1 a0 -0.0126 0.0097 -0.0098 -0.0078 0.0061 -0.0063

2 a1 0.0002 0.0053 -0.0001 -0.0032 0.0119 -0.0027

3 b1 -0.0181 0.0221 -0.0131 -0.0115 0.0087 -0.0099

4 a2 -0.0034 0.0603 -0.0061 -0.0147 0.0540 -0.0102

5 b2 -0.1442 0.0550 -0.1385 -0.0918 0.0558 -0.0855

6 a3 0.0010 0.0162 0.0034 0.0019 0.0170 0.0078

7 b3 -0.0352 0.0308 -0.0330 -0.0253 0.0148 -0.0264

Tab. 1 Means, standard deviations and medians of parameters.
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Fig. 4 Boxplots of estimated parameters of model (1).

Thus, the results of the procedure described above were N1 sets of seven para-
meters (a0, a1, b1, a2, b2, a3, b3) obtained (estimated) from the first sample of cross-
sections, and N2 sets from the second sample. Table 1 displays the mean values,
standard deviations, and medians of these sets. Estimated characteristics of distri-
butions of parameters in both sets were compared. Graphical comparison is seen
from the boxplots of Figure 4. The numerical comparison was again performed with
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the aid of 2 sample t-tests. The tests lead to the conclusion that the only significant
difference was the difference between parameters b2 (the statistics T = −2.5860), the
mean value of b2 from the sample 1 was −0.1442 against −0.0918 from the sample 2.
Parameter b2 corresponded to the component cos(2u), which was the component
most influencing the deformation of the contour. Therefore we might conclude that
the heat-treated fibers had significantly flattened cross-sections, compared to the
sample of heat-untreated fibers.
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Fig. 5 Simulated shapes.

4. Simulation of contours

The objective of the simulation was to support the conclusion of statistical analysis,
by random generation of contours using the model (1). One set of results is shown in
the Figure 5. We selected 100 equidistant points ui between 0 and 2π and generated
corresponding normalized radii vi in accordance with the model (1). Then, the ran-
dom noise was added; it was generated from the normal distribution with zero mean
and the variance corresponding to averaged residual variances obtained from our
data (∼ 4 · 10−4). Finally, the resulting function with random noise was added to a
regular circle with radius 1 and then multiplied by 35, so that the obtained contour
represented a ’noisy’ deformed circle with radius ∼ 35. The first case displayed in
Figure 1 corresponds to the circular contour without deformation, i.e. the case when
all parameters of model (1) were set to zero, g(ui) ≡ 0. The result is on subplot a).
Then, one of the parameters was changed, while the rest was still kept equal to zero.
Thus, subplot b) corresponds to the case with decreased b1 = −0.1 (the contour
is shifted). Subplot c) displays the result of decreased b2 = −0.1 – the contour is
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flattened, which corresponds to the situation detected in our real case data. Finally,
subplot d) shows the result of decreased parameter b3 = −0.1. The changes of pa-
rameters a1, a2, a3, respectively, had the same consequences (only the direction of
deformation varied). Thus, the results of simulations supported the conclusion that
the changes of certain parameters are connected with certain types of deformation.
On the other side, parameters b2 of model (1) do not suffice to a direct classifi-

cation of shapes. Figure 5 shows that there is not any distinct border between the
parameters of the first and the second group and that their distributions overlap.
An experiment with the classification tree construction showed that a combination
of at least three parameters is necessary for a good separation of both groups of
contours.

5. Concluding remarks, Procrust analysis

From the point of view of mathematical shape analysis, the proposed model was
a rather simple one. Nevertheless, it quite sufficed for the conclusion that one type
of contours differs significantly from the other. We also demonstrated how such
a model was able to describe certain kinds of deformations of circular shapes.
We want to mention here also another approach to the shape analysis, namely

the Procrust analysis (e.g. Dryden and Mardia, 1998). The shape is represented by
a set of significant points (landmarks) placed on the contour. The relative positions
of these landmarks are then compared (either with landmarks on a standard object
or among different objects). The typical applications are the recognition of certain
objects from the images of earth surface or the analysis of CTM images in medical
studies. On the other hand, the method is not convenient for shapes without na-
tural significant points, or for the shapes too complicated, when a large number of
points is necessary for shape description. The case of circular shapes (i.e. the case
considered in our study) belongs to the first group. For such instances the method
can be enriched by the analysis of cyclic permutations of selected contour points.
However, neither such a modification was efficient enough to solve our problem, i.e.
to discriminate clearly between examined samples of fibers.
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