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ON A FITTING OF A LINEAR MIXED MODEL WITH A FINITE

NORMAL MIXTURE AS RANDOM-EFFECTS DISTRIBUTION

ARNOŠT KOMÁREK, GEERT VERBEKE

Abstract. This paper describes an approximate method to compute maximum
likelihood estimates of the parameters in the linear mixed model with a finite
normal mixture as random-effects distribution. The proposed method uses an
EM algorithm with an approximate M step which can be performed using pro-
cedures designed to fit a common linear mixed model. This approach enables,
among others, to include easily various covariance structures of the residuals
and random effects in the model. The suggested method has been implemented
as a SAS macro which is publicly available on the Internet.

Abstrakt. Článek se zabývá přibližným postupem pro výpočet maximálně vě-
rohodných odhad̊u v lineárním smíšeném modelu s normální směsí v rozdělení
náhodných efekt̊u. Navržená metoda využívá EM algoritmu, jehož M část je
založena na přibližné maximalizaci optimalizované funkce a lze k ní využít pro-
cedur určených k výpočtu odhad̊u běžného lineárního smíšeného modelu. Vý-
hodou tohoto přístupu je mj. možnost snadného zahrnutí rozmanitých struktur
pro varianční matice reziduí a náhodných efekt̊u. Popsaná metoda byla ná-
sledně implementována jako makro programu SAS, které lze volně získat na síti
Internet.

1. Introduction

A linear mixed model is a frequently used tool for describing longitudinal continuous
data. Its random effects are usually assumed to be normally distributed. Unfortuna-
tely, this basic assumption can very often be violated. This will occur, for example,
if an important categorical covariate is omitted from the fixed part of the model.
That is why Verbeke and Lesaffre (1996) proposed to assume that random effects are
distributed according to a finite normal mixture. The advantage of this approach is,
among others, the fact that many continuous distributions can be well approximated
by a finite normal mixture illustrating that the proposed model is generally appli-
cable. On the other hand, a big disadvantage is a lack of available computational
tools to fit such models in practice.
In this article, we concentrate on describing an approximate method to compute

maximum likelihood estimates of the linear mixed model with a finite normal mixture
as random effects distribution that can be quite easily implemented using common
software for the linear mixed models.
After defining the model in Section 2, we show in Section 3 how the estimates

can be computed using the EM algorithm and how the most difficult part of it –
the M step can be approximately performed by tools designed for the classical linear
mixed model.
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2. Model formulation

This section introduces briefly the concept of the linear mixed model with a finite
normal mixture as random-effects distribution that was proposed by Verbeke and
Lesaffre (1996) and also described by Verbeke and Molenberghs (2000, Chapter 12).
In accordance to the therminology used by them, the linear mixed model with a finite
normal mixture as random effects distribution will be further called as the heteroge-
neity linear mixed model. It can be seen as an extension of the classical linear mixed
model which will be called the homogeneity linear mixed model.
Let the random variable Yik denote the (possibly transformed) response of inte-

rest, for the ith individual measured at time tik, i = 1, . . . , N, k = 1, . . . , ni, and let
Y i be the ni-dimensional vector of all repeated measurements for the ith subject,
that is, Y i = (Yi1, . . . , Yini

)T . The heterogeneity linear mixed model starts from
similar relationship as the homogeneity model, that is from

(1) Y i =
(

Xi Zi

)

(

βF

βR

)

+ Zibi + εi,

where Xi and Zi are (ni × p), respectively (ni × q) matrices of known covariates,

modeling how the response evolves over time for the ith subject. Further, βF and
βR are p-dimensional, respectively q-dimensional vectors of unknown regression pa-
rameters. Variables bi are subject-specific q-dimensional random effects, and εi is
ni-dimensional vector of residual components εik, k = 1, . . . , ni. All εi are assumed
to be independent and normally distributed with mean vector zero and covariance
matrix Σi.

We have just described the part of the heterogeneity model that is the same as for
the homogeneity model. The former one differs from the latter one in assumptions
on subject-specific effects bi. They are assumed to be independent by both models.
The homogeneity model consideres them as normally distributed with mean vector
zero and covariance matrix D. The heterogeneity model is obtained by replacing this
distributional assumption by a mixture of a prespecified number g of q-dimensional
normal distributions with mean vectors µj and covariance matrices D, i.e.

(2) bi ∼

g
∑

j=1

πjN(µj , D),

with
∑g

j=1 πj = 1.More general case assumes different covariancematrices D1, . . . , Dg

for each component of the mixture. But this can lead to infinitely large likelihood.
In order to avoid numerical problems in the estimating procedure, we will assume
D1 = · · · = Dg = D.
Vectors W i = (Wi1, . . . , Wig)

T can now be defined as follows. The term Wij = 1
if bi is sampled from the jth component of the mixture and 0 otherwise, j = 1, . . . , g.
The distribution ofW i is then described by

P (Wij = 1) = E(Wij) = πj ,

which is called the prior probability to be sampled from component j. Expected
values of bi can then be easily obtained as

E(bi) = E
(

E[bi|W i]
)

= E





g
∑

j=1

µjWij



 =

g
∑

j=1

πjµj .
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Expectation of the response is then

E(Y i) = E(Xiβ
F + Ziβ

R + Zibi + εi) = Xiβ
F + Ziβ

R + Zi

g
∑

j=1

πjµj .

The homogeneity model usually assumes E(Y i) = Xiβ
F +Ziβ

R. It is quite desirable
to keep this property even for the heterogeneity model and therefore the additional
constraint

(3)

g
∑

j=1

πjµj = 0

is needed.
The model (1) with assumptions (2) can also be rewritten as a following hierar-

chical Bayes model

Y i|bi ∼ N(Xiβ
F + Ziβ

R + Zibi,Σi),

bi|µ ∼ N(µ, D),

µ ∈ {µ1, . . . , µg}, with P (µ = µj) = πj .

(4)

This expression might be useful when the heterogeneity model is going to be used
for classification of individual profiles into one of g populations. The underlying data
generating mechanism can be viewed as a two step process. First, the population
is chosen and second, response is generated according to the chosen population. In
practice, one can wish to reveal the first step of this mechanism and to try to classify
an individual with observed response vector Y into one of the populations.

3. Estimation of the heterogeneity model

3.1. The General Concept of the Estimation Procedure. Estimation of unk-
nown parameters of the heterogeneity model is based on a marginal distribution of
the observations Y i. Under (1) and (2) This distribution can easily be found to be
given by

Y i ∼

g
∑

j=1

πjN(Xiβ
F + Ziβ

R + Ziµj , Vi), with Vi = ZiDZ
T
i +Σi.

Let π be the vector of component probabilities (i.e. πT = (π1, . . . , πg)) and let γ

be the vector of all other unknown parameters (i.e. βF , βR, components of matrices

D and Σi). Further, let θT = (πT , γT ) denote the vector of all unknown parameters
that are to be estimated. Method of maximum likelihood can be used to find reques-
ted estimates. The likelihood function corresponding to the marginal distribution of
the observations Y i is of the form

(5) L∗(θ|y) =

N
∏

i=1







g
∑

j=1

πjfij(yi|γ)







.

where yT = (yT
1 , . . . , yT

N ) is the vector containing all observed response values

and fij is the density of an ni-dimensional normal distribution N(Xiβ
F + Ziβ

R +
Ziµj , Vi).
Note that the likelihood function (5) is invariant under the g! possible permu-

tations of the mean vectors and corresponding probabilities of the components of



On a fitting of a linear mixed model with a finite normal mixture . . . 189

the mixture. However, this lack of identifiability can easily be overcome by imposing
some constraint on the parameters. For example, the constraint

(6) π1 ≥ π2 ≥ · · · ≥ πg

suggested by Aitkin and Rubin (1985) can be used. The likelihood is then maximi-
zed without the restriction, and the component labels are permuted afterward to
achieve (6).
The log-likelihood function corresponding to the likelihood (5) is then

l∗(θ|y) =
N

∑

i=1

log







g
∑

j=1

πjfij(yi|γ)







.

It is quite difficult to maximize this function and the EM algorithm introduced by
Dempster, Laird and Rubin (1977) can be used to compute the desired estimates.
The response vectors Y i along with the (unobserved) population indicatorsW i can
be seen as complete data whereas the vectors Y i alone can be viewed as incomplete
data since information containing population pertinence is missing. The likelihood
function (5) corresponds then to the incomplete data. The likelihood function that
would have been obtained if values wi = (wi1, . . . , wig)

T of population indicators
W i had been observed equals

(7) L(θ|y, w) =

N
∏

i=1

g
∏

j=1

{πjfij(yi|γ)}
wij

where wT = (wT
1 , . . . , wT

N ) is the vector containing all hypothetically observed po-
pulation indicators. The log-likelihood function corresponding to (7) has then the
more attractable form

l(θ|y, w) =

N
∑

i=1

g
∑

j=1

wij{logπj + log fij(yi|γ)}.

Maximizing l(θ|y, w) with respect to θ yields estimates which depend on the unobser-
ved (“missing”) indicators w. The EM algorithm offers a solution to this problem
by maximizing the expected value of l(θ|y, w), rather than l(θ|y, w) with respect
to θ, where the expectation is taken over all unobserved wij . The conditional ex-
pectation of l(θ|y, w), given the observed data vector y, is calculated within the
E step (expectation step) of each iteration of the EM algorithm. The obtained ex-
pected log-likelihood function is then maximized within the M step (maximization
step) of the algorithm.

Let θ(t) be the current estimate for θ, and θ(t+1) stands for the updated esti-
mate, obtained from one further iteration of the EM algorithm. The following E and
M steps have to be followed to compute the updated estimate.

The E step. The conditional expectation
The conditional expectation of l(θ|y, w), given the observed data vector y is given

by

Q(θ|θ(t)) = E
[

l(θ|y, w)
∣

∣y, θ(t)
]

=

N
∑

i=1

g
∑

j=1

pij(θ
(t))

{

log πj + log fij(yi|γ)
}

.
(8)
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The terms pij(θ
(t)) are called the posterior probabilities for the ith individual to

belong to the jth component of the mixture and can easily be computed using
Bayes’ theorem as

pij(θ
(t)) = E

[

Wij

∣

∣yi, θ
(t)] = P

(

Wij = 1
∣

∣yi, θ
(t)) =

=
π
(t)
j fij(yi|γ

(t))
∑g

k=1 π
(t)
k fik(yi|γ

(t))
.

Note that the posterior probabilities pij(θ̂) evaluated in the estimate θ̂ of the vector
θ can be used for classification or clustering of individual profiles in the sense that

the ith individual is classified into the kth component for which maxj=1,...,g pij(θ̂) =

pik(θ̂).

The M step. The maximization

The objective function Q(θ|θ(t)) has to be maximized with respect to θ to get

the updated estimate θ(t+1). Expression (8) is the sum of two terms as indicated
below.

Q(θ|θ(t)) = Q1(π|θ(t)) +Q2(γ|θ
(t)),

where

Q1(π|θ(t)) =
N

∑

i=1

g
∑

j=1

pij(θ
(t)) log πj ,

Q2(γ|θ
(t)) =

N
∑

i=1

g
∑

j=1

pij(θ
(t)) log fij(yi|γ).

The first term depends only on the parameter π, the second one only on the pa-
rameter γ. Hence, it is possible to maximize each of these terms separately to find
a maximum of Q. The function Q1 can be easily found to be maximized for

π
(t+1)
j =

1

N

N
∑

i=1

pij(θ
(t)).

In fact, these estimates are equal to an average of posterior probabilities for all
subjects belonging to a given population.
Unfortunately, the function Q2 cannot be maximized analytically as the first one.

In the next section, it will be derived how an approximate optimization of Q2 can
be obtained using the common software for fitting the homogeneity linear mixed
models, such as the SAS procedure PROC MIXED or the R/Splus function lme.

3.2. How to Maximize Q2 – the Second Part of the Objective Function.

The function

(9) Q2(γ|θ
(t)) =

N
∑

i=1

g
∑

j=1

pij(θ
(t)) log fij(yi|γ)

is to be maximized with respect to γ. Maximization of (9) with respect to γ is
equivalent to maximization of

A · Q2(γ|θ
(t)) =

N
∑

i=1

g
∑

j=1

A · pij(θ
(t)) log fij(yi|γ)
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for an arbitrary positive constant A. Further, numbers A ·pij(θ
(t)) can be arbitrarily

close to integers by choosing A sufficiently large. In practice, their rounded values

can be used to approximate the function A ·Q2(γ|θ
(t)). Let aij(θ

(t)) denote integers
such that

aij(θ
(t))

.
= A · pij(θ

(t))

and let

(10) QA
2 (γ|θ

(t)) =

N
∑

i=1

g
∑

j=1

aij(θ
(t)) log fij(yi|γ).

The function QA
2 (γ|θ

(t)) can be interpreted as the log-likelihood function for the

homogeneity linear mixed model based on observations from
∑N

i=1

∑g

j=1 aij(θ
(t))

mutually independent individuals. Note that the ith response vector Y i from the

original data set appears
∑g

j=1 aij(θ
(t)) times in a data set which corresponds to

the desirable homogeneity model. At the same time, the marginal distribution of

aij(θ
(t)) response vectors Y i out of their

∑g

j=1 aij(θ
(t)) replications follows the ni-

dimensional normal distribution N(Xiβ
F+Ziβ

R+Ziµj , Vi), with Vi = ZiDZ
T
i +Σi.

At this moment, common software for homogeneity linear mixed models is able to
compute updated approximate estimates of γ. The higher the value of A is used,
the better the approximation is obtained. One has to take into account only present
computational possibilities.
When implementing this method, one also has to consider the constraint (3) of

the form
∑g

j=1 πjµj = 0 that was exposed to the population means at the beginning
of this section. Fortunately, it is not too difficult to ensure that this constraint is sa-
tisfied since the originally restricted q-dimensional parameters βR, µ1, . . . , µg can be
replaced by unrestricted q-dimensional parameters δ1, . . . , δg using the relationship

δj = βR + µj , j = 1, . . . , g.

In fact, parameters δj express real population means, whereas parameters µj repre-

sent the contrasts between a population mean and the overall mean βR. Restriction
(3) also gives the way to compute βR from δ1, . . . , δg, that is

βR =

g
∑

j=1

πjδj .

3.3. Empirical Bayes Inference. The random effects bi in model (1) are assumed
to be random variables and that is why they cannot be estimated in a standard way.
Bayesian techniques can perfectly help in such situation and so called Empirical

Bayes (EB) estimates b̂i can be used as a basic tool for the inference for the random
effects. It will be immediately shown that they can be also quite easily obtained
using the common software for fitting the homogeneity linear mixed models. Let us
denote the estimate of θ parameters obtained using the EM algorithm described in

the previous section as θ̂. The EB estimate b̂i of the random effects is then given by

b̂i = b̂i(θ̂) = E[bi|Y i = yi, θ = θ̂],

where the expected value is based on a posterior distribution derived from the mo-
del (4) using Bayesian techniques. See, for example, Gelman et al. (1995). It follows
from Verbeke and Molenberghs (2000, Section 7.2) that for the homogeneity linear
mixed model, the EB estimates are equal to

b̂i = D̂Z
T
i V̂

−1
i (yi − Xiβ̂

F
− Ziβ̂

R
),



192 Arnošt Komárek, Geert Verbeke

where all ‘hat’ expressions are obtained by replacing their components by the esti-

mates θ̂. The EB estimates of the random effects for the heterogeneity linear mixed
model are according to Verbeke and Molenberghs (2000, Section 12.3) given by

b̂i = D̂Z
T
i V̂

−1
i (yi − Xiβ̂

F
− Ziβ̂

R
) + (Iq − D̂Z

T
i V̂

−1
i Zi)

g
∑

j=1

pij(θ̂)µ̂j .(11)

We can further derive from (11) that

(12) b̂i =







g
∑

j=1

[

pij(θ̂)D̂Z
T
i V̂

−1
i (yi − Xiβ̂

F
− Ziδ̂j)

]







+

g
∑

j=1

pij(θ̂)µ̂j ,

where δ̂j = β̂
R
+ µ̂j , j = 1, . . . , g. Let us denote b̂

j

i = D̂Z
T
i V̂

−1
i (yi − Xiβ̂

F
− Ziδ̂j).

The relationship (12) can then be rewritten as

b̂i =

g
∑

j=1

pij(θ̂)b̂
j

i +

g
∑

j=1

pij(θ̂)µ̂j .

It can be easily revealed that the quantities b̂
j

i are common EB estimates of random

effects for aij(θ̂) individuals with common response vector Y i from the homoge-
neity linear mixed model that was used in the last iteration of the EM algorithm
when maximizing QA

2 function (10). This property can be advantageously used when
computing EB estimates for the heterogeneity linear mixed model.

The EB estimates b̂i of the random effects are usually used for diagnostic pur-
poses, such as the detection of outliers etc. More information concerning the use of
the EB estimates can be found in Verbeke and Molenberghs (2000, Chapter 7).

3.4. A SAS Macro. The just described methodology for the computation of the
maximum likelihood estimates of the heterogeneity linear mixed model can be quite
easily implemented using existing procedures and functions for fitting homogene-
ity linear mixed models such as the SAS procedure PROC MIXED or the R/Splus
function lme. The main advantage of this approach is the fact that all covariance
structures for matrices Σi and D that are offered by these functions and procedures
can be used.
A SAS macro called HetMixed, for fitting heterogeneity models can be downloa-

ded along with its manual from the URL of the Biostatistical Centre, K.U. Leuven:
http://www.kuleuven.ac.be/biostat/research/software.htm.

The macro was developed using the SAS version 8. A lot of efforts were spent in
making its syntax as similar as possible to the SAS PROC MIXED. So that the user
familiar with this procedure should not have any problems when using this macro.
More information can be found in Komárek et al. (2002).

4. Discussion

Modelling repeated measures by the homogeneity linear mixed model is not always
satisfactory since the assumed normal distribution of random effects might be viola-
ted. The homogeneity linear mixed model is also not useful for classification purpo-
ses. The so-called heterogeneity linear mixed model that allows us both to classify
individual profiles and to create models with many other underlying distributions
for random effects than just only Gaussian one was therefore introduced. Appealing
properties of the heterogeneity linear mixed model are mostly given by the fact that
the distribution of random effects is assumed to be a mixture of normals which can



On a fitting of a linear mixed model with a finite normal mixture . . . 193

well approximate lots of other, commonly used continuous distributions. Note that
the normality assumption for the random effects is violated, whenever an important
categorical covariate has been omitted as a fixed effect in a linear mixed model.
Random effects then follow a mixture of g, possibly normal distributions, where g is
the number of categories of the missing covariate.
Unfortunately, wider using of the heterogeneity linear mixed models was inhibited

by insufficient software support. That is why, we have proposed an approximate
method how to compute the maximum likelihood estimates of unknown parameters
using available procedures and functions for the homogeneity linear mixed model.
The proposed method has been implemented as a macro in standard, commercially
available software (SAS). The core procedure (PROC MIXED) that comes with the
software is used to perform the most involved part of the estimation procedure.
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