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ARBITRAGE OPPORTUNITY AND MARTINGALE PRICING

MEASURES

ALENA HENCLOVÁ

Abstract. King and Korf [3] introduced a new framework for analyzing pricing
theory for incomplete markets and contingent claims. The fundamental theorem
of asset pricing was reformulated in a very general form. It claims that under the
assumption of the essentially arbitrage-free market, the fair price of a contingent
claim can be stated as a supremum of the expectation over an infinite set of
equivalent finitely additive martingale probabilistic measures. We propose an
equivalent characterization of the arbitrage-free market in the sense of no free
lunch in the limit.

Rez�me. King i Korf [3] predstavili novu� koncepci� analiza teo-

rii oceneni� dl� nepolnogo rynka i finansovyh potokah. Oni pere-

formulirovali fundamentaƩnu� teoremu o ocenenii aktiv v obwe�

forme. Зta teorema ustanavlivaet, qto esli rynok bez arbitraжa, to

spravedliva� cena finansovogo potoka estь supremum oжidani� qerez

mnoжestvo зkvivalentnyh koneqno-additivnyh martingalovyh mer.

My predlagaem harakterizaci� rynka bez arbitraжa.

1. Introduction

King and Korf [3] introduced a new framework for analyzing pricing theory for in-
complete markets and contingent claims. They used conjugate duality and stochastic
optimization theory applied on the duality scheme L∞/(L∞)∗. For the history of ap-
plying duality in stochastic programming on infinite dimensional spaces we refer the
reader to [3].
Various statements in the literature of the fundamental theorem of asset pricing

give conditions under which an arbitrage-free market is equivalent to the existence
of an equivalent martingale measure. A formula for the fair price of a replicated
contingent claim is given as an expectation with respect to such a measure. In the
setting of incomplete markets, the fair price is a supremum over a set of equivalent
martingale measures.
In [3], the fundamental theorem of asset pricing was reformulated in the very

general form. It claims that under the assumption of the essentially arbitrage-free
market, the fair price of a contingent claim can be stated as a supremum of the
expectation over an infinite set of equivalent finitely additive martingale probabilistic
measures. An arbitrage opportunity in the market is characterized by a free lunch
in the limit that is slightly weaker than a usual definition of free lunch.
In Sections 2-4, the mathematical overview of the financial terminology is given,

the writer’s problems are specified, and no free lunch in the limit is introduced. In
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Section 5 we propose an equivalent characterization of the arbitrage-free market in
the sense of no free lunch in the limit.

2. Model specification

We begin with a mathematical overview of the necessary financial terminology (for
more details see [3]). The underlying market is a collection of J + 1 traded assets
indexed by j = 0, . . . , J . Each asset has an initial market price at time t = 0, and
future market prices at times t = 1, . . . , T . The prices are described by a nonnegative
vector S0 = (S

0
0 , . . . , S

J
0 )

⊤ ∈ R
J+1
+ of future market prices, where (Ω,F , P ) is an

underlying probability space with P -complete σ-algebra F generated by a filtration
Ft with FT = F . It is assumed that the first asset is risk-free in the sense that
its market price is always strictly positive (S0t > 0, t = 0, . . . , T ). This asset is
the numeraire. Using it to normalize the values of all other assets, we can get the
new discounted price vectors Zt = St/S0t . It is assumed that all other prices and
cash flows have been similarly adjusted to reflect this normalization. Prices in the
price vector Zt are assumed to be Ft-measurable and essentially bounded. Let us
denote by L∞(Ω,F , P ;A) the set of all F -measurable functions w on Ω such that
|w(ω)| ≤ M P -almost surely for some M (we follow the notation of [4]). Hence

assume all variables Zt ∈ L∞(Ω,F , P ;RJ+1
+ ).

An investor may hold a portfolio of assets j = 0, . . . , J , described by a vector
θt = (θ

0
t , . . . , θJ

t )
⊤, t = 0, . . . , T . The investor has some initial wealth to invest, and

may change his or her portfolio at each time t = 0, . . . , T . The decision of the portfolio
arrangement will depend on the market behaviour. A trading strategy describes
all investment decisions based on all possible outcomes of the market. Therefore,
θ = (θ0, . . . , θT ) describes a trading strategy, where at time t = 0, the market
prices are known and θ0 is described by a vector in R

J+1. At time t = 1, . . . , T , the
market prices are Ft-measurable functions on Ω, so that θt : Ω → R

J+1 is also Ft-
measurable, and describes the portfolio at time t. Note that θt is allowed to take on
negative values, which corresponds to borrowing. The class of all possible strategies
is limited to those which are essentially bounded.
A self-financing trading strategy is one in which no new money is required or

generated to create it. This is expressed by Z⊤
t θt = Z⊤

t θt−1 P -a.s. for all t =
1, . . . , T . It is convenient to adopt the notation ∆θt = θt − θt−1. Obviously, ∆θt is
Ft-measurable.
Next we define a contingent claim. A contingent claim is a type of contract that is

contingent on the underlying market. Precisely, in our setting, it is a promise to pay
Ft : Ω→ R at each time t = 1, . . . , T , where Ft is Ft-measurable. We assume again
that Ft is Ft-measurable and essentially bounded. It could take negative values.

3. The writer’s problems

The writer of a contingent claim will price the claim at a fair price in consideration of
the fact that he will be able to invest his earnings from the sale in the market. Assu-
ming for now that this price has been fixed at F0, the writer’s portfolio optimization
problem (Pw) is given by

max E[Z⊤
T θT ]

subject to Z⊤
0 θ0 ≤ F0 (Pw)

Z⊤
t ∆θt ≤ −Ft P -a.s. , t = 1, . . . , T

Z⊤
T θT ≥ 0 P -a.s.
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Associated with the problem (Pw) is the writer’s pricing problem (Pwp) in which
the writer determines the fair price of the contingent claim as the lowest price F0
such that (Pw) is feasible:

min V

subject to Z⊤
0 θ0 − V ≤ 0 (Pwp)

Z⊤
t ∆θt ≤ −Ft P -a.s. , t = 1, . . . , T

Z⊤
T θT ≥ 0 P -a.s.(2)

These two problems can be stated in a general form using the writer’s utility
function u : R → R as a problem (Pu)

max E[u(Z⊤
T θT )]

subject to Z⊤
0 θ0 ≤ F0 (Pu)

Z⊤
t ∆θt ≤ −Ft P -a.s. , t = 1, . . . , T(3)

and (Pup), respectively:

min V

subject to Z⊤
0 θ0 − V ≤ 0 (Pup)

Z⊤
t ∆θt ≤ −Ft P -a.s. , t = 1, . . . , T

Z⊤
T θT ∈ cl domu P -a.s.

We assume that the utility function u is concave, strictly increasing, and upper
semi-continuous, with u(x) → ∞ as x → ∞. In the particular instances (Pw) and
(Pwp), the utility function takes the form

u(x) =

{

x, x ≥ 0
−∞, x < 0

In [3], the dual problems were formulated using theory of conjugate duality and
optimization in the L∞/(L∞)∗ stochastic programming duality scheme (see [5]). For
the definition and basic properties of L∞ and (L∞)∗ see [2].
Especially note that each element ȳ ∈ (L∞)∗ may be uniquely decomposed into

an L1 component y and a singular component y0. An element y0 ∈ (L∞)∗ is singular
if there exists a sequence of sets Eν ⊂ Ω with P (Eν)ց 0 such that for all z ∈ L∞

if z1Eν = 0 P -a.s. for some ν, then y0(z) = 0.
The problem dual to (Pu) is

min F0y0 −

T
∑

t=1

E[Ftyt]−

T
∑

t=1

〈y0t , Ft〉 − (Eu)∗(yT , y0T )

subject to E[ytZ
⊤
t θt−1] + 〈y0t , Z⊤

t θt−1〉 = E[yt−1Z
⊤
t−1θt−1] + 〈y0t−1, Z

⊤
t−1θt−1〉

for all θt−1 ∈ L∞(Ω,Ft−1, P ;R
J+1), t = 1, . . . , T

y ≥ 0 (Du)
y ∈ Y(5)

and the problem dual to (Pup) is
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max

T
∑

t=1

E[Ftyt] +

T
∑

t=1

〈y0t , Ft〉+ E[αxT ] + 〈x0T , α1〉

subject to E[ytZ
⊤
t θt−1] + 〈y0t , Z⊤

t θt−1〉 = E[yt−1Z
⊤
t−1θt−1] + 〈y0t−1, Z

⊤
t−1θt−1〉

for all θt−1 ∈ L∞(Ω,Ft−1, P ;R
J+1), t = 1, . . . , T

x0T = y0T , xT = yT P -a.s. , y0 = 1
y ≥ 0 (Dup)
y ∈ Y(6)

where 〈., .〉 denotes the bilinear form on (L∞)∗ × L∞ (in fact, 〈y, z〉 = y(z)),

Y = {y = (y0, ȳ1, ȳ2, . . . , ȳT ) : y0 ∈ R, ȳt = (yt, y
0
t ) ∈ (L

∞)∗(Ω,Ft, P ;R)},

t = 1, . . . , T, with the weak∗ product topology, and
y ≥ 0 with y ∈ Y means that y0 ≥ 0, yt ≥ 0 P -a.s. and 〈y0t , z〉 ≥ 0 for all
z ∈ L∞

+ (Ω,Ft, P ;R), t = 1, . . . , T .

The functional Eu : L∞(Ω,F , P ;R)→ R is defined by Eu(x) = E[u(x)],
(Eu)∗ : (L∞)∗(Ω,F , P ;R) → R is the conjugate of Eu in the concave sense, which
means

(Eu)∗(y) = inf
w∈L∞(Ω,F ,P ;R)

{〈y, w〉 − Eu(w)},

α = inf domu > −∞, and 1 = 1 P -a.s.
Recall that the problem (Pu) is said to be strictly feasible if there exists ε > 0,

θ ∈ Θ such that

Z⊤
0 θ0 ≤ F0 − ε

Z⊤
t ∆θt ≤ −Ft − ε P -a.s. , t = 1, . . . , T.

There is a duality theorem relating these problems.

Theorem 3.1. Suppose (Pu) is strictly feasible. Then sup(Pu) = min(Du).

4. No free lunch in the limit

The arbitrage in the market means that there is a possibility to generate positive
wealth with no risk. The market is said to admit no free lunch if there are no self-
financing trading strategies with zero initial wealth, nonnegative terminal wealth,
and with a positive probability of strictly positive terminal wealth. In [3], a new
concept called no free lunch in the limit is introduced. It means that there is no
sequence of trading strategies satisfying

Z⊤
0 θν
0 = 0

Z⊤
t ∆θν

t = 0 P -a.s. , t = 1, . . . , T

Z⊤
T θν

T ≥ −εν P -a.s.
lim

ν→∞
E[Z⊤

T θν
T ] > 0

where εν ց 0. The next theorem equates no free lunch in the limit with the boun-
dedness of the problem (Pw).

Theorem 4.1. Suppose (Pw) is strictly feasible with F0 > ess inf(
∑T

t=1 Ft). Then
the following are equivalent.

(i) (Pw) is bounded,
(ii) the market admits no free lunch in the limit.
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5. The fundamental theorem of asset pricing

In [3], the pricing theory for contingent claims in incomplete market is derived. The
fair price is taken as inf (Pup).
Recall that {Zt}

T
t=0 is a martingale under a probabilistic measure Q if

E[Zt|Ft−1] = Zt−1 Q-a.s., t = 1, . . . , T.

If in addition Q ≪ P , we call Q the martingale measure for the process {Zt}
T
t=0.

Theorem 5.1. Suppose the market admits no free lunch in the limit. Then the

writer’s fair price is

max
Q∈Q

{

T
∑

t=1

EQ[Ft] + α

}

where Q denotes the space of finitely additive martingale measures and
α = inf domu > −∞.

Also the equivalent characterization of the arbitrage-free market is discussed. But
Lemma 7.1 and consequently Theorem 7.2 in [3] should be formulated more carefully.
Let us present the corrected version of the theorem and its proof.

Lemma 5.2. Problem (Du) is feasible if and only if there exists a finitely addi-
tive equivalent martingale measure Q on Ω such that infw∈L∞(Ω,F ,P ;R){EQ[w] −
EP [u(w)]} > −∞.

Proof. Let y = (y0, (y1, y
0
1), . . . , (yT , y0T )) ∈ Y be feasible for (Du). Then y satisfies

the constraints in (Du)

E[ytZ
⊤
t θt−1] + 〈y0t , Z⊤

t θt−1〉 = E[yt−1Z
⊤
t−1θt−1] + 〈y0t−1, Z

⊤
t−1θt−1〉

for all θt−1 ∈ L∞(Ω,Ft−1, P ;R
J+1), t = 1, . . . , T,

(yT , y0T ) ∈ dom(Eu)∗, y ≥ 0.

It can be shown that yT > 0 P -a.s. as it was in [3].
Let v̄T = (vT , v0T ) where

vT =
yT

E[yT ] + 〈y0T ,1〉
and

v0T =
y0T

E[yT ] + 〈y0T ,1〉
.

We show that the set function Q defined by

Q(E) = 〈v̄T ,1E〉, E ∈ F

is an equivalent finitely additive martingale measure. The finite additivity is induced

by such property of (yT , y0T ). By normalization, Q(Ω) = 〈v̄T ,1〉 = E[yT ]
E[yT ]+〈y0

T
,1〉
+

〈y0
T

,1〉

E[yT ]+〈y0
T

,1〉
= 1. Since vT > 0, Q is equivalent to P . Now we show that Q is a

martingale measure for the price process Z. Let vt = E[vT |Ft] and v0t be the unique
singular component which is Ft-measurable and satisfies

〈v0t ,1E〉+ E[vT1E ] = Q(E) for all E ∈ Ft, t = 0, . . . , T.

Then
vt =

yt

E[yT ] + 〈y0T ,1〉

and

v0t =
y0t

E[yT ] + 〈y0T ,1〉
.
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Thus by the constraints in (Du), we obtain

EQ[Z
⊤
t θt−1] = E[vT Z⊤

t θt−1] + 〈v0T , Z⊤
t θt−1〉

= E[vtZ
⊤
t θt−1] + 〈v0t , Z⊤

t θt−1〉
= E[vt−1Z

⊤
t−1θt−1] + 〈v0t−1, Z

⊤
t−1θt−1〉

= EQ[Z
⊤
t−1θt−1].

Hence Q is an equivalent finitely additive martingale measure. Since (yT , y0T ) ∈
dom(Eu)∗, we have

inf
w∈L∞(Ω,F ,P ;R)

{EQ[w]−E[u(w)]} = inf
w∈L∞(Ω,F ,P ;R)

{E[wyT ]+〈y
0
T , w〉−E[u(w)]} > −∞

Now suppose that there exists an equivalent finitely additive martingale measure
Q such that infw∈L∞(Ω,F ,P ;R){EQ[w]−E[u(w)]} > −∞. Let (y, y0) be the represen-
tation of Q in (L∞)∗(Ω,F , P ;R). By assumption, we get

(Eu)∗(y, y0) = inf
w∈L∞(Ω,F ,P ;R)

{EQ[w]− E[u(w)]} > −∞,

and hence (y, y0) ∈ dom(Eu)∗.
Let yt = E[y|Ft] and let y

0
t be the unique Ft-measurable singular component such

that

〈y0t ,1E〉+ E[y1E ] = Q(E) for all E ∈ Ft, t = 0, . . . , T.

Then y = (y0, (y1, y
0
1), . . . , (yT , y0T )) ∈ Y is a feasible solution to (Du), which com-

pletes the proof. �

Corollary 5.3. Problem (Dw) is feasible if and only if P is the martingale measure
for the price process.

Proof. It is sufficient to make the following observation. Let us assume that
there exists a finitely additive equivalent martingale measure Q on Ω such that
infw∈L∞

+
(Ω,F ,P ;R){EQ[w] − EP [w]} > −∞. We show that in such case Q = P . On

the contrary, suppose that there exists E ∈ F such that Q(E) 6= P (E). Without loss
of generality we assume P (E) > Q(E). Let wν = ν1E . Then EQ[w

ν ] − EP [w
ν ] =

ν(Q(E) − P (E))ց −∞ as ν → ∞, which contradicts the assumption. �

Theorem 5.4. The market admits no free lunch in the limit if and only if P is the
martingale measure for the price process.

Proof. Consider the writer’s portfolio optimization problem (Pw) with (Pw) strictly

feasible and satisfying F0 > ess inf
∑T

t=1 FT . By Theorem 4.1, no free lunch in the
limit is equivalent to the boundedness of (Pw). This is equivalent to the feasibility
of (Dw) through the duality result in Theorem 3.1. Finally, Corollary 5.3 gives us
the equivalence between the feasibility of (Dw) and the property of P being the
martingale measure. �

In fact, the original concept of free lunch does not depend on the choice of the
equivalent underlying probabilistic measure P , but the free lunch in the limit does.
Therefore in Theorem 5.4, we cannot talk about any equivalent martingale measure,
but just the underlying probabilistic measure P . There is no general method to
specify whether or not a probabilistic martingale measure for the price process exists.
The answer is known in the case of F finite (see e.g. [1]).
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