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NONLINEAR LEAST TRIMMED SQUARES

PAVEL ČÍŽEK

Abstract. The estimation of regression models is often based on the least
squares method, which is very sensitive to misspecification and data errors.
An alternative estimation approach is based on the theory of robust statistics,
which builds upon parametric specification, but provides a methodology for
designing misspecification-proof estimators. However, this concept, developed
in statistics, has so far been applied almost exclusively to linear regression
models. Therefore, I adapt the least trimmed squares estimator to nonlinear
regression models. This paper presents the adapted robust estimator and the
proof of its consistency. Additionally, I derive the asymptotic distribution of the
nonlinear least trimmed squares including its asymptotic variance.

Zusammenfassung. In der Regressionsanalyse werden hufig die Methoden, die
auf dem Prinzip der kleinsten Quadrate beruhen, eingesetzt, obwohl sie sehr
empfindlich gegen Datenfehler und Fehlspezifikation des Modells sind. Im Ge-
gensatz dazu ermöglicht es die Theorie der robusten Statistik, robuste parame-
trische Schätzer zu entwerfen (zum Beispiel, die Least Trimmed Squares (LTS)
Methode). Diese robuste Methoden sind aber fast ausschlieslich nur fur lineare
Modelle geeignet. Um den LTS Schätzer fur die nichtlineare Regression zu adap-
tieren, verallgemeinere ich den LTS fur nichtlineare Modelle und beweise, dass
der LTS Schutzer in diesen Follen konsistent ist. Schlieslich leite ich auch die
asymptotische Verteilung des LTS inklusive der asymptotischen Varianz ab.

1. Introduction

Least trimmed squares (LTS) is a statistical technique for estimation of unknown
parameters of a linear regression model. It was proposed by Rousseeuw (1985)
as a robust alternative to the classical least squares method, which, while being
frequently used in regression analysis, is quite sensitive to data contamination and
model misspecification. Although the asymptotic and robust properties of this es-
timator were already studied by Rousseeuw and Leroy (1987), LTS was not widely
used until recently. There are several reason for this, but the main one is com-
putational: it is possible to compute LTS only approximately and even obtaining
an approximation was relatively time consuming; moreover, a good approximation
algorithm did not previously exist. However, availability of a good and fast approxi-
mation algorithm (see, for example, Rousseeuw and Van Driessen (1999)) and faster
computers make LTS more attractive recently, of course, hand in hand with the
presence of these algorithm in some widely-spread statistical packages.
Still, the LTS estimator has several shortcomings concerning especially its appli-

cability in nonlinear regression. The only existing results cover its robust properties
(Stromberg (1992)) and consistency (Chen, Stromberg, Zhou (1997)) in nonlinear
regression. In this paper, I aim to extend the asymptotic results concerning the
LTS estimation of nonlinear regression models, namely to prove its

√
n-consistency
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and asymptotic normality. This provides not only the rate of convergence, but most
importantly the asymptotic variance of LTS.
Why is it useful to think about nonlinear models at all? Let me exemplify this. It

is sometimes not clear, for instance, which functional form describes best the depen-
dence on an explanatory variable. To resolve this point, the Box-Cox transformation
can be used (see Box and Cox (1964)), that is a transformation of a random vari-
able Z parameterized by λ ∈ R that represents various functions of Z for different
values of λ: linear (λ = 1), logarithmic (λ = 0), inversely proportional (λ = −1), and
so on. Applying the transformation to dependent and independent variables provides
then a parameterized choice between different regression models (linear, log-linear,
semi-logarithmic, reciprocal, etc.). Another example of an intrinsically nonlinear mo-
del can be a model with an exponential regression function but an additive error term
(instead of a multiplicative one). Finally, time series models with state-dependent
regression function are becoming more widely used (see Tong (1990) for summary of
these models) and they are typically estimated with nonlinear least squares as well.
Thus, they represent another class where nonlinear LTS can be applied.
Let me now precise the goal of the work. In this paper, I study the behavior of

the LTS estimator applied in the nonlinear regression model

(1) yi = h(xi, β) + εi, i = 1, . . ., n,

where yi ∈ R represents the dependent variable and h(x, β) is a function of xi ∈ R
k,

a vector of explanatory variables, and of β ∈ R
p, a vector of unknown parameters.

The LTS estimator used within this framework is further referred to as the nonli-
near least trimmed squares (NLTS) estimator in order to differentiate it from the
LTS estimator used within the linear-regression framework. In the paper, I first re-
view important facts about LTS and define NLTS itself (Section 2). Later, I discuss
necessary assumptions for the asymptotic properties of NLTS (Section 3.2), and fi-
nally, I derive the asymptotic linearity, consistency, and asymptotic normality of the
proposed NLTS (Sections 3.4 and 3.5).

2. Definition of nonlinear least trimmed squares

To assure easy understanding, it is beneficial to describe first the least trimmed
squares estimator, introduced by Rousseeuw (1985), and its properties (Section 2.1).
The nonlinear LTS estimator is introduced in Section 2.2.

2.1. Least trimmed squares. Let us consider a linear regression model yi =
βT xi+εi for i = 1, . . ., n. The least trimmed squares estimator β̂

(LTS)
n is then defined

as

(2) β̂(LTS)n = argmin
β∈Rp

h
∑

i=1

r2[i](β),

where r2[i](β) represents the ith order statistics of squared residuals r21(β), . . . , r
2
n(β);

ri(β) = yi − βT xi and β ∈ R
p. The trimming constant h have to satisfy n

2 < h ≤ n.
This constant determines robustness of the LTS estimator, since definition (2) implies
that n − h observations with the largest residuals do not have a direct influence on
the estimator. The highest level of robustness is achieved for h = [n/2] + [(p+1)/2]
(Rousseeuw and Leroy (1987, Theorem 6)), whereas the LTS robustness is lowest for
h = n, which corresponds to the least squares estimator. There is, of course, a trade-
off: lower values of h lead to a higher degree of robustness, while higher values of
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h improve efficiency (if the data are not too contaminated) since more (presumably
correct) information in the data is utilized.

2.2. Definition of nonlinear least trimmed squares. Let us consider model (1),
yi = h(xi, β) + εi, where yi is the dependent variable and h(xi, β) is a known re-
gression function of the data xi and a vector β of p unknown parameters. Given a
sample (yi, xi), the NLTS estimate β̂

(NLTS,h)
n is defined by

(3) β̂(NLTS,h)n = argmin
β∈B

h
∑

i=1

r2[i](β),

where B ⊂ R
p is the parameter space, r2[i](β) represents the ordered sample of

squared residuals r2i (β) = (yi − h(xi, β))2, and h is the trimming constant (see
Section 2.1). This estimator shares in most cases its robustness properties with the
already reviewed LTS (see Stromberg (1992)) and the same is true for many of its
asymptotic properties as will become gradually evident in what follows.

3. Consistency and asymptotic normality of NLTS

In this section I present the main asymptotic results concerning NLTS, namely, its
asymptotic linearity, consistency, and asymptotic normality. Before proving these
properties, an alternative definition of NLTS and some notational conventions used
in the rest of the paper are mentioned as well as the assumptions necessary for the
mentioned asymptotic results.

3.1. Alternative definition of NLTS, notation. Given a sample (yi, xi), the
NLTS estimator of unknown parameter vector β is defined for model (1) by equation
(3). The true underlying value of the vector β in (1) will be referred to by β0. Further,
the most important function of yi, xi, and β is the residual function r2(xi, yi;β) =
(yi − h(xi, β))2. Given some fixed β ∈ B, the distribution function of residuals
r2(xi, yi;β) is denoted Gβ and its density gβ , if it exists. Specifically for β = β0, the
index will be omitted, that is Gβ0 ≡ G and gβ0 ≡ g, which represent the distribution
function and probability density function of ε2i .
Next, an alternative definition of NLTS employed in the theoretical part of this

paper instead of (3) is given by1

β̂(NLTS,h)n = argmin
β∈B

n
∑

i=1

r2i (β) · I
(

r2i (β) ≤ r2[h](β)
)

.(4)

To obtain formula (4), one has to realize that for a given value of β ∈ B, the mini-
mization of the h smallest squared residuals means that we include in the objective
function only those residuals that satisfy r2i (β) ≤ r2[h](β).

2

One additional note concerns the trimming constant: whenever asymptotic pro-
perties of NLTS are studied, that is n → +∞, we have to work with a sequence of
trimming constants hn (for every sample size n, there has to be a corresponding cho-
ice of h). As this constant determines the robustness properties of NLTS, we want to
prescribe asymptotically a fixed fraction λ of observations that are considered to be

1By I(property describing a set A) we denote the indicator of the set A.
2In general, this definition is not equivalent to the first one. They are exactly equivalent if and

only if all the residuals are different from each other. Under the assumptions given in Section 3.2,
this happens with zero probability and definitions (3) and (4) are equivalent almost surely as the
cumulative distribution function of ri(β) is assumed to be absolutely continuous. Therefore, we
further use definition (4) for convenience.
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correct, 12 < λ ≤ 1, or alternatively, a fraction 1−λ of observations that are excluded
from the objective function of NLTS (0 ≤ 1 − λ < 1

2 ). The trimming constant for
a given n ∈ N can be then defined by hn = [λn], where [·] represents the integer
part, and hence hn/n → λ. From now on, we assume that there is such a number
λ ∈ (12 , 1〉 for a sequence hn of trimming constants defining the NLTS estimator.
To close this section, we discuss some purely mathematical notation. An open

neighborhood of a point x ∈ R
l is denoted by U(x, δ) =

{

z ∈ R
l : ‖z − x‖ < δ

}

.
Moreover, let us denote the convex span of x1, . . ., xm ∈ R

l by [x1, . . ., xm]κ . Finally,
let 1n represent n-dimensional vector of ones and In be the n × n identity matrix.

3.2. Assumptions. Now, I specify all the assumptions necessary to prove the asymp-
totic linearity of NLTS. They form two groups–distributional assumptions D for ran-
dom variables in (1) and assumptions H concerning properties of function h(x, β).
First of all, let me discuss the distributional assumptions dealing with the random

variables used in model (1). We argue in a number of remarks that the following
assumptions do not restrict us in any way in real applications.

Assumption D.

D1: Let (xi, εi) ∈ R
k×R, i = 1, . . ., n, be a sequence of independent identically

distributed random vectors with finite fourth moments and let xi and εi be
mutually independent. Moreover,

(5) n−1/4max
i,j

|xij | = Op(1).

Remark 1. The necessity to include assumption (5) is caused by the discontinuity
of the objective function of NLTS. A nonrandom version of this assumption was used,
for example, by Víšek (1999). Using Proposition 1, I claim that equation (5) holds
even for some distribution functions with polynomial tails, namely for those that have
finite second moments. This becomes apparent once we realize that a distribution
with tails behaving like one over a polynomial of the third or lower order does not
have finite second moments. As the existence of finite second moments is one of the
necessary conditions here, assumption (5) should not pose a considerable restriction
on the explanatory variables. You can also notice that random variables with a finite
support are not restrained by this assumption in any way.

Proposition 1. Let x1, x2, . . . be a sequence of independent identically distributed
random variables with a distribution function F (x). Let b(x) be a lower bound for
F (x) in a neighborhood U1 of +∞. If b(x) can be chosen as 1− 1

P4(x)
, where P4(x)

is a polynomial of the fourth order, then it holds that n− 1

4 maxi=1,...,n xi = Op(1) as
n → +∞. Analogously, let c(x) be an upper bound for F (x) in a neighborhood U2
of −∞. If c(x) can be chosen as 1

P4(x)
, where P4(x) is a polynomial of the fourth

order, then it holds that n− 1

4 mini=1,...,n xi = Op(1) as n → +∞.

Proof. See Čížek (2001, Proposition 1). �

D2: We assume E xix
T
i = Q, where Q is a nonsingular matrix, and

E

(

εiI
(

r2i
(

β0
)

≤ r2[hn]

(

β0
)

)∣

∣

∣
xi

)

= 0, E

(

ε2i I
(

r2i
(

β0
)

≤ r2[hn]

(

β0
)

)∣

∣

∣
xi

)

= σ2,

where σ2 ∈ (0,+∞).
Remark 2. This is a natural analogy of usual orthogonality condition E(ε|x) = 0
and spheriality condition E(εεT |x) = σ2I in the case of the linear regression model.
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D3: The distribution function F of εi is absolutely continuous. Let f denote
the probability density of F , which is assumed to be positive, bounded by
Mf > 0 and differentiable on the whole support of the distribution function
F . Let f ′ denote the first derivative of f .

Remark 3. Note that Assumption D3 implies the following property of the distri-
bution function F (x) and its density f(x): for any 0 < α < 1 we can find ε > 0 such
that infx∈(F−1(α)−ε,F−1(α)+ε) min {F (x), f(x)} > 0. The same is true for G(x)and
g(x).

Remark 4. In Assumption D3, the existence of the probability density function f
and its derivative is required. If the explanatory variables are uniformly bounded,
supi∈N,j=1,...,k |xij | = O(1), then it is sufficient for these densities and their deriva-
tives to exist only in a neighborhood of −

√

G−1(λ) and
√

G−1(λ). The same applies
to the assumption that the probability densities are bounded.

As we aim to apply NLTS to nonlinear models, several conditions on the regression
function h(x, β) have to be specified. Most of them are just regularity conditions that
are employed in almost any work concerning nonlinear regression models. Because
the assumptions stated below rely on the value of β and I do not have to require their
validity over the whole parametric space, I restrict β to a neighborhood U(β0, δ) in
these cases and suppose that there exists a positive constant δ such that all the
assumptions are valid.

Assumptions H. Let the following assumptions hold for some δ > 0.

H1: Let h(xi, β) be a continuous in β ∈ B (uniformly over any compact subset
of the support of x) and twice differentiable function in β on U(β0, δ) almost
surely. The first derivative is continuous for β ∈ U(β0, δ).

H2: Furthermore, let us assume that the second derivatives h
′′

βjβk
(x, β) satisfy

locally the Lipschitz property in a neighborhood of β0.
H3: Let

(6) n−1/4 max
1≤i≤n

max
1≤j≤p

∥

∥

∥
h

′

βj
(xi, β)

∥

∥

∥
= Op(1)

and

(7) n−1/2 max
1≤i≤n

max
1≤j,k≤p

∥

∥

∥
h

′′

βjβk
(xi, β)

∥

∥

∥
= Op(1)

as n → +∞ uniformly over β ∈ B.

Remark 5. Assumption H3 depicts another regularity condition that is going to
be fulfilled in most cases. For example, for a function of the form h(xT

i β), where
h is twice differentiable, we can immediately observe that h

′

βj
(x, β) = h

′

(xT
i β)xij ,

and analogously, h
′′

βjβk
(x, β) = h

′′

(xT
i β)xijxik. Hence, assumptions (6) and (7) are

a direct consequence of (5) as long as the first two derivatives of h(x, β) are bounded
on any compact subset of the support of random variable x.

H4: Moreover, we assume that Eh
′

β

(

xi, β
0
)

h
′

β

(

xi, β
0
)T
= Qh, where Qh is

a nonsingular positive definite matrix.
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3.3. Asymptotic linearity.

3.3.1. Normal equations. In order to analyze the behavior of the NLTS estimator,
we use normal equations as the starting point, that is, instead of minimizing the

objective function ρ(β) =
∑n

i=1 r2i · I
(

r2i (β) ≤ r2[h](β)
)

over all β ∈ B, we consider

a solution of ∂ρ(β)
∂β = 0.

3.3.2. Asymptotic linearity. Analogously as forM -estimators or LTS (see Jurečková
and Sen (1989), Víšek (1996), or Víšek (1999)), we shall first investigate the term

Sn(t) =
∂ρ(β0−n−

1

2 t)
∂β − ∂ρ(β0)

∂β for t ∈ TM = {t ∈ R
p : ‖t‖ ≤ M}, where 0 < M < ∞

is an arbitrary, but fixed constant. More precisely, we show that Sn(t) behaves
asymptotically as a linear function of n− 1

2 t over the whole set TM .

Theorem 1. Let Assumptions D and H hold. Then for a given λ ∈ (12 , 1〉, it holds
that

n− 1

4 sup
t∈TM

∥

∥

∥
Sn(t) + n

1

2 · Qht · [λ − qλ · {f(−qλ) + f(qλ)}]
∥

∥

∥
= Op(1)

as n → +∞, where qλ =
√

G−1(λ).

Proof. See Čížek (2001, Theorem 1). �

3.4.
√

n consistency. In this section, I derive the consistency of NLTS. To provide
as complete picture as possible, I specify two sets of assumptions. The first group,
Assumption NC, is as general as possible and is sufficient just for proving consistency
of NLTS; the second group, Assumption NN, allows us to derive

√
n-consistency and

asymptotic normality of NLTS. In the presented form, Assumption NC correspond
mostly to the assumptions required for the uniform law of large numbers in nonlinear
models, which is in a very general form presented in Andrews (1987).

Assumption NC. Let the following assumptions are satisfied for function q(xi, εi;β)

= r2i (β) · I
(

r2i (β) ≤ G−1
β (λ)

)

, where ri(β) = εi + h
(

xi, β
0
)

− h(xi, β).3

NC1: Let the parameter space B be a compact metric space.
NC2: Let q(xi, εi;β), q∗(xi, εi;β, ρ) = sup {q(xi, εi;β) : β′ ∈ U(β, ρ)} , and

q∗(xi, εi;β, ρ) = inf {q(xi, εi;β) : β′ ∈ U(β, ρ)} be measurable random vari-
ables for all β ∈ B, i ∈ N, and for all ρ > 0 sufficiently small.

NC3: Let E
{

supβ∈B |q(xi, εi;β)|
}1+δ

< ∞ for some δ > 0.

Remark 6. Assumptions NC1–NC3 are necessary (together with the assumption
concerning the differentiability of function h(x, β) with respect to β) for the uniform
law of large number. Assumption NC3 is actually a standard condition used in this
context to ensure that functions {q∗(xi, εi;β, ρ)} and {q∗(xi, εi;β, ρ)} satisfy poin-
twise the strong law of large numbers for any β ∈ B and all ρ sufficiently small; see
Andrews (1987), for instance. Moreover, note that

(8) ri(β) = εi + h
(

xi, β
0
)

− h(xi, β) = εi + h
′

β(xi, ξ(β)) · (β − β0),

where h
′

β(xi, ξ) is bounded independently of β (under Assumption H3) and β − β0

is bounded as well (B is a compact space). Hence, the existence of an upper bound
for r2i (β) follows from Assumptions H and NC1 and Assumption NC3 just requires
existence of a certain expectation of this upper bound.

3For the case of nonlinear least squares, λ = 1 and G−1

β
(λ) =∞. Therefore, this case corresponds

to q(xi, εi; β) = r2i (β).
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NC4: For any ε > 0 and U(β0, ε) such that B − U(β0, ε) is compact, there
exists α(ε) > 0 such that it holds

min
β∈B−U(β0,ε)

E q(xi, εi;β)− E q(xi, εi;β
0) > α(ε).

Remark 7. This is nothing but an analogy of the identification condition for the
nonlinear least squares, see for example White (1980).

NC5: Assume that IG = infβ∈B G−1
β (λ) > 0 and mgg = infβ∈B infz∈(−δ,δ)

gβ

(

G−1
β (λ) + z

)

> 0, where Gβ and gβ are the cumulative distribution

function and the probability density function of r2i (β).
NC6: Let gβ(z) is bounded on (IG,+∞) uniformly in β ∈ B, that is, there is

Mgg > 0 such that supβ∈B supz∈(IG,+∞) gβ(z) ≤ Mgg.

Remark 8. Although Assumptions NC5 and NC6 might look unfamiliar at the first
sight, they just guarantee that the distribution functions of random variables r2i (β)
do not converge to some extreme cases for some β ∈ B. Namely, these conditions
exclude cases when the expectation or variance of r2i (β) converge to infinite values for
some β ∈ B or when the distribution function Gβ converges to a discrete distribution
function for some β ∈ B. This does not restrict us in commonly used regression
models, because the parametric space B is compact.

The following theorem confirms that Assumption NC is sufficient for the consis-
tency of NLTS.

Theorem 2. Let Assumptions D, H, and NC hold. Then the nonlinear least trimmed
squares estimator defined for model (1) by

β̂(NLTS,h)n = argmin
β∈B

n
∑

i=1

r2i (β) · I
(

r2i (β) ≤ r2[h](β)
)

is consistent, that is, β̂ → β0 in probability as n → +∞.

Proof. See Čížek (2001, Theorem 2). �

Next, let us recall that Assumption NC is the sufficient condition for the consis-
tency of NLTS. However, if we enrich Assumption NC to below stated Assumption
NN, we are able to prove even the

√
n-consistence and asymptotic normality of

NLTS. Assumption NN is in principle equivalent to Assumption NC applied not
only to the residual function r2i (β), but also to its first two derivatives.

Assumption NN. Let Assumption NC hold, and additionally, Assumptions NC1–
NC3 are satisfied for functions

• q(xi, εi;β) = r2i (β) · I
(

r2i (β) ≤ G−1
β (λ)

)

,

• q(xi, εi;β) = ri(β) · h
′′

βjβk
(xi, β) · I

(

r2i (β) ≤ G−1
β (λ)

)

,

• q(xi, εi;β) = h
′

βj
(xi, β) · h

′

βk
(xi, β) · I

(

r2i (β) ≤ G−1
β (λ)

)

,

where j, k = 1, . . ., p.
Finally, combining all the conditions stated so far, namely, D, H, and NN, we can

prove the
√

n-consistence of NLTS.
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Theorem 3. Let Assumptions D, H, and NN hold. Then β̂
(NLTS,hn)
n is

√
n-consistent,

that is,

√
n

(

β̂(NLTS,hn)
n − β0

)

= Op(1)

as n → +∞.

Proof. See Čížek (2001, Theorem 3). �

3.5. Asymptotic normality. The
√

n-consistency of NLTS derived in Theorem 3
allows us to use the asymptotic linearity of the objective function (Theorem 1)

for t = β̂
(NLTS,hn)
n and to derive this way the main result concerning NLTS – its

asymptotic normality.

Theorem 4. Let Assumptions D, H, and NN are fulfilled and

Cλ = λ − qλ ·
{

f
(

G−1(λ)
)

+ f
(

G−1(λ)
)}

6= 0.

Then β̂
(NLTS,hn)
n is asymptotically normal with its expectation equal to β0:

√
n

(

β̂(NLTS,hn)
n − β0

)

F→ N(0, V ),

where V = C−2
λ · Q−1

h var

[

εi · h
′

β

(

xi, β
0
)

· I
(

ε2i ≤ G−1(λ)
)

]

Q−1
h .

Proof. See Čížek (2001, Theorem 4). �

4. Conclusion

In this paper, I have introduced the nonlinear least trimmed squares estimator and
derived its asymptotic properties. Thus, the applicability of LTS is extended to
various intrinsically nonlinear models (asymptotic distribution is known). However,
given the rather theoretical character of the paper, it remains to be seen whether the
existing computational procedures designed for LTS in the linear regression model
suit well various nonlinear settings.
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