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SOME NOTES CONCERNING PREDICTION IN AR PROCESSES

PETR ZVÁRA

Abstract. The prediction of the (n+s)-th observation of the p-th order autore-
gressive process is studied. The mean squared error of the predictor (MSEP)
when the autoregressive parameters are estimated by least squares is obtained
to terms of order n−1 for some low order processes. It is shown that model
overfitting increases MSEP. The naive prediction interval for Xn+s obtained

by employing the estimated autoregressive model for prediction is considered.
The overall coverage probability is evaluated to order n−1 in a special case. It
is lower than the nominal one, because such prediction procedure ignores the
uncertainty in the model parameters.
V rabote izuqaets� prognozirovanie znaqeni� Xn+s v processe av-

toregressii por�dka p s neizvestnymi koefficientami. Privedenno

�vnoe vyra�enie dl� qlena por�dka n−1 srednekvadratiqesko$i o-

xibki prognoza v nekotoryh model�h. Dalee rassmotren naivny$i in-

terva	ny$i prognoz dl� Xn+s, postroenny$i s pomow� ocenok neizvest-

nyh parametrov. V qastnom sluqae vyqislena ego nade�nost~.

1. Introduction

Let the autoregressive time series {Xt} satisfy

(1) Xt = a0 +
p∑

j=1

ajXt−j + et, t = 1, 2, . . . , n,

where {et} is a sequence of independent N(0, σ2) random variables andX0, X−1, . . . ,
X1−p are given random variables. The characteristic equation associated with model
(1) is

(2) zp −
p∑

j=1

ajz
p−j = 0.

We assume that the process is a strictly stationary normal process, hence the
roots of (2) are less than one in absolute value and X0, . . . , X1−p are normal random
variables with the same covariance structure as Xt+p−1, . . . , Xt for all t > 1 − p.

We adopt a standard multivariate representation for the process (1). Let Xt =
(Xt, Xt−1, . . . , Xt−p+1, 1)′ and et = (et, 0, . . . , 0)′. Then we have

(3) Xt = AXt−1 + et,

2000 Mathematics Subject Classification. Primary 60G25; Secondary 62M10.
Key words and phrases. Stationary process, prediction, coverage probability.
Acknowledgement. The research was supported by grants GAČR 201/00/0770 and MSM
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where

A =



a1 a2 . . . ap−1 ap a0

1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . 1 0 0
0 0 . . . 0 0 1


.

The least squares predictor of Xn+s given a past history {X1−p, . . . , Xn} is
X̄n+s = a0 +

∑p
j=1 ajX̄n+s−j , where X̄t = Xt if t ≤ n. If the parameters a =

(a1, . . . , ap, a0)′ and σ2 must be estimated, the predictor

(4) X̂n+s = â0 +
p∑

j=1

âjX̂n+s−j , X̂t = Xt if t ≤ n

is obtained by replacing the unknown a by an estimator â = (â1, . . . , âp, â0)′.
There are a number of commonly used estimation procedures for stationary

Xt. In this text we consider the maximum likelihood estimators conditioned on
X0, . . . , X1−p (least squares estimators)

(5) â =
( n∑

t=1

Xt−1X
′
t−1

)−1( n∑
t=1

Xt−1Xt

)
, σ̂2 = n−1

n∑
t=1

(Xt − X ′
t−1â)2.

We employ slightly different notation when the expectation µ = EXt is assumed
to be known. Then a0 is not to be estimated and the model (1) can be written as

(6) Yt =
p∑

j=1

ajYt−j + et, t = 1, 2, . . . , n,

where Yt = Xt − µ. The multivariate representation for (6) is Y t = BY t−1 + et,
where Y t = (Yt, . . . , Yt−p+1)′ and

B =


a1 a2 . . . ap−1 ap
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .

We define the least squares estimators a∗ and σ2∗ as

(7) a∗ =
( n∑

t=1

Y t−1Y
′
t−1

)−1( n∑
t=1

Y t−1Yt

)
, σ2∗ = n−1

n∑
t=1

(Yt − Y ′
t−1a

∗)2.

The predictor of Xn+s associated with a∗ is

(8) X∗
n+s = Y ∗

n+s + µ, Y ∗
n+s =

p∑
j=1

a∗jY
∗
n+s−1, Y

∗
t = Xt − µ if t ≤ n.

Fuller and Hasza (1980, Th. 1) investigated an AR(1) model and showed that the
predictor (4) is unbiased for symmetric error distributions. Cryer, Nankervis and
Savin (1990, Th. 6) extended their results to predictors based on fitted ARMA(p, q)
models with exogenous nonrandom regressors.
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Fuller and Hasza (1981, Cor. 2.1.) obtained an approximation for the variance of
the predictor error Xn+s − X̂n+s through terms of O(n−1). They have shown that
E {(Xn+s − X̂n+s)2} is the upper left element of the matrix

σ2
s−1∑
j=0

AjMA
′j + n−1σ2

s−1∑
j=0

s−1∑
k=0

AjMA
′k

× Tr
{

(As−j−1Γ)′(Γ−1As−k−1)
}

+O(n−3/2),

(9)

where Γ = E {XtX
′
t} and M is a matrix with one as the upper left element and

zeros elsewhere. For s = 1 we have E {(Xn+1 − X̂n+1)2} = σ2[1 + n−1(p + 1)] +
O(n−3/2). In section 2 we evaluate (9) for general prediction period s in some low
order autoregressive models.

Since Xn+s is a random variable, a predictive region is relevant. Let V (s) =
σ2
∑s−1

j=0 w
2
j , where the {wj} satisfy difference equations

wj −
p∑

i=1

aiwj−i = 0, j = 1, 2, . . .

subject to the initial conditions w0 = 1 and wj = 0 for j < 0. Then for a given
α ∈ (0, 1), a natural one-sided 100α% predictive interval for Xn+s is

(10) PIs(α) = [−∞, X̄n+s + zα
√
V (s)],

since the conditional distribution ofXn+s given {X1−p, . . . , Xn} is normal with mean
X̄n+s and variance V (s) (Montgomery et all, 1990).

A naive prediction region for Xn+s commonly used in textbooks on applied time
series analysis as for example Montgomery et. all (1990) is a random set

(11) P̂Is(α) = [−∞, X̂n+s + zα
√
V̂ (s)]

obtained by substituting the estimated parameters into (10). More precisely, X̂n+s

is defined in (4) and V̂ (s) = σ̂2
∑s−1

0 ŵ2
j , where ŵj satisfy

ŵj −
p∑

i=1

âiŵj−i = 0, j = 1, 2, . . .

subject to ŵ0 = 1 and ŵj = 0 for j < 0.When µ is known, we define similarly PI∗s(α)
as a prediction region for Xn+s based on a∗.

The overall coverage probability of P̂Is(α), P [Xn+s ∈ P̂Is(α)] is less than α due
to the ignored increase in the mean squared error of prediction when employing the
estimated autoregressive model for prediction. In section 3 we evaluate the overall
coverage probability of the naive one step ahead prediction interval PI∗1(α) through
terms of O(n−1) assuming the variance of et is known.

2. Mean squared error of prediction in some low order

autoregressive processes

Using similar arguments as in Fuller and Hasza (1981), one can show that when
the expectation µ is known, the variance of Xn+s −X∗

n+s is the upper left element
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of the matrix

σ2
s−1∑
j=0

BjMB
′j + n−1σ2

s−1∑
j=0

s−1∑
k=0

BjMB
′k

× Tr
{

(Bs−j−1ΓY )′(Γ−1
Y Bs−k−1)

}
+O(n−3/2),

(12)

where ΓY = E {Y tY
′
t} and M is a matrix with one as the upper left element and

zeros elsewhere.

2.1. AR(1) process. Consider first the AR(1) model with unknown expectation

(13) Xt = a0 + a1Xt−1 + et, t = 1, . . . , n,

where et ∼ N(0, σ2), |a1| < 1 andX0 ∼ N(a0(1−a1)−1, σ2(1−a2
1)−1). The predictor

is X̂n+s = â0 + â1X̂n+s−1, where X̂n+s = Xn+s for s ≤ 0 and(
â1

â0

)
=
(∑n

t=1X
2
t−1

∑n
t=1Xt−1∑n

t=1Xt−1 n

)−1(∑n
t=1Xt−1Xt∑n

t=1Xt

)
.

In this case we have

A =
(
a1 a0

0 1

)
.

Matrix multiplication yields

Aj =
(
aj1 a0

∑j−1
0 ai1

0 1

)
and

(14) AjMA
′k =

(
aj+k

1 0
0 0

)
.

Evaluating moments of Xt up to second order, we find

Γ = E {XtX
′
t} =

(
σ2

1−a2
1

+ a2
0

(1−a1)2
a0

1−a1
a0

1−a1
1

)
.

Calculating the trace of (As−j−1Γ)′(Γ−1As−k−1), many terms vanish and we have

(15) Tr{(As−j−1Γ)′(Γ−1As−k−1)} = 1 + a2s−j−k−2
1 .

Combining (14) and (15) yields
s−1∑
j=0

s−1∑
k=0

AjMA
′k Tr{(As−j−1Γ)′(Γ−1As−k−1)} =

(
s2a2s−2

1 +
(

1−as
1

1−a1

)2

0
0 0

)
.

Inserting into (9) we have

E {(Xn+s − X̂n+s)2} = σ2
s−1∑
j=0

a2j
1 + n−1σ2s2a2s−2

1 + n−1σ2
(1 − as1

1 − a1

)2

+O(n−3/2),

which is Theorem 2 of Fuller and Hasza (1980).
When the expectation of Xt is known, Tr{(Bs−j−1ΓY )′(Γ−1

Y Bs−k−1)} simplifies
to a2s−j−k−2

1 and we find

(16) E {(Xn+s −X∗
n+s)2} = σ2

s−1∑
j=0

a2j
1 + n−1σ2s2a2s−2

1 +O(n−3/2).
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2.2. AR(2) process. Consider now the strictly stationary AR(2) model with zero
expectation

(17) Xt = a1Xt−1 + a2Xt−2 + et, t = 1, . . . , n,

where et ∼ N(0, σ2). The predictor isX∗
n+s = a∗1X

∗
n+s−1+a∗2X

∗
n+s−2, whereX∗

n+s =
Xn+s if s ≤ 0 and(

a∗1
a∗2

)
=
( ∑n

t=1X
2
t−1

∑n
t=1Xt−1Xt−2∑n

t=1Xt−1Xt−2

∑n
t=1X

2
t−2

)−1(∑n
t=1Xt−1Xt∑n
t=1Xt−2Xt

)
.

The parametr matrix of multivariate representation for (17) is

B =
(
a1 a2

1 0

)
.

Denote the roots of characteristic equation z2 − a1z − a2 = 0 by z1 and z2, then
a1 = z1 + z2 and a2 = −z1z2. Stationarity condition implies that |zi| < 1, i = 1, 2.
The zero mean AR(1) process is a special case of (17) when z2 = 0.

Denote the rows of B by r0 = (1, 0)′ and r1 = (a1.a2)′. Then the rows of Bj

are rj and rj−1. They satisfy the relation rj = a1rj−1 + a2rj−2. Solving these
difference equations subject to initial conditions above, we obtain

Bj =
1

z1 − z2

(
zj+1

1 − zj+1
2 z1z

j+1
2 − zj+1

1 z2
zj1 − z

j
2 z1z

j
2 − z

j
1z2

)
.

Matrix multiplication yields

BjMB
′k =

1
(z1 − z2)2

(
(zj+1

1 − zj+1
2 )(zk+1

1 − zk+1
2 ) (zj+1

1 − zj+1
2 )(zk1 − zk2 )

(zj1 − zj2)(zk+1
1 − zk+1

2 ) (zj1 − zj2)(zk1 − zk2 )

)
.

Using the relation
∑s−1

j=0 z
j = (1− zs)(1− z)−1 if |z| < 1, we find that the upper left

element of
∑s−1

0 BjMB
′j is

(18)
1

(z1 − z2)2

{
z21

1 − z2s
1

1 − z21
− 2z1z2

1 − (z1z2)s

1 − z1z2
+ z22

1 − z2s
2

1 − z22
}
.

The matrix of second moments of Xt is

Γ = ΓY = E {(Xt, Xt−1)′(Xt, Xt−1)} = γ0

(
1 z1+z2

1+z1z2
z1+z2
1+z1z2

1

)
,

where γ0 = EX2
t is the variance of the process. The inverse is

Γ−1 = γ−1
0

1 + z1z2
(1 − z21)(1 − z22)

(
1 + z1z2 −z1 − z2
−z1 − z2 1 + z1z2

)
.

Multiplicating

Γ−1Bs−k−1 = γ−1
0

1 + z1z2
(1 − z21)(1 − z22)(z1 − z2)

×
(
z1z

s−k−1
2 (1 − z22) − zs−k−1

1 z2(1 − z21) zs−k−1
1 z22(1 − z21) − z21zs−k−1

2 (1 − z22)
zs−k−1

1 (1 − z21) − zs−k−1
2 (1 − z22) z1z

s−k−1
2 (1 − z22) − zs−k−1

1 z2(1 − z21)

)
and

Γ′Bs−j−1′ =
γ0

(1 + z1z2)(z1 − z2)

×
(
zs−j

1 (1 − z22) − zs−j
2 (1 − z21) zs−j−1

1 (1 − z22) − zs−j−1
2 (1 − z21)

zs−j+1
1 (1 − z22) − zs−j+1

2 (1 − z21) zs−j
1 (1 − z22) − zs−j

2 (1 − z21)

)
,
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we obtain

Tr{(Bs−j−1Γ)′(Γ−1Bs−k−1)} =
1

(z1 − z2)2

{
(1 − z1z2)2(z2s−j−k−2

1 + z2s−j−k−2
2 )

− (1 − z21)(1 − z22)(zs−j−1
1 zs−k−1

2 + zs−k−1
1 zs−j−1

2 )
}
.

Using relation
∑s−1

k=0 z
k
1z

s−1−k
2 = (zs1 − zs2)(z1 − z2)−1 = K say, we find that the

upper left element of the matrix

s−1∑
j=0

s−1∑
k=0

BjMB
′k Tr{(Bs−j−1Γ)′(Γ−1Bs−k−1)}

is

(1 − z1z2)2

(z1 − z2)4

{
K2(z21 + z22) − 2Ks(zs1z2 + z1zs2) + s2(z2s

1 + z2s
2 )
}

+
(1 − z21)(1 − z22)

(z1 − z2)4

{
2K2z1z2 − 2Ks(zs+1

1 + zs+1
2 ) + 2s2zs1z

s
2

}
.

(19)

Inserting (18) and (19) into (9) we obtain

E {(Xn+s −X∗
n+s)2} =

σ2

(z1 − z2)2

{
z21

1 − z2s
1

1 − z21
− 2z1z2

1 − (z1z2)s

1 − z1z2
+ z22

1 − z2s
2

1 − z22
}

+ n−1σ2 (1 − z1z2)2

(z1 − z2)4

{
K2(z21 + z22) − 2Ks(zs1z2 + z1zs2) + s2(z2s

1 + z2s
2 )
}

+ n−1σ2 (1 − z21)(1 − z22)
(z1 − z2)4

{
2K2z1z2 − 2Ks(zs+1

1 + zs+1
2 ) + 2s2zs1z

s
2

}
.

(20)

When s = 1 we have K = 1 and find E {(Xn+1 −X∗
n+1)2} = σ2(1 + 2n−1), which is

the same expression as that obtained by other authors.

2.3. Application. As an application of the result (20) we can evaluate the effect
of overfitting on the mean squared prediction error. Let z2 = a2 = 0 in (17) which
implies a1 = z1. Thus we fit the AR(2) model when the true model is AR(1). Then
(20) reduces to
(21)

E {(Xn+s − X̂n+s)2} = σ2 1 − a2s
1

1 − a2
1

+n−1σ2(s−1)2a2s−4
1 +n−1σ22sa2s−2

1 +O(n−3/2).

Since (s−1)2+2sa2
1−s2a2

1 = (1−a2
1)(s−1)2+a2

1 is always positive, we infer from (16)
and (21) that overfitting the zero mean AR(1) model by one additional autoregressive
parameter results in increase of the mean squared prediction error. The amount of
increase can be analytically expressed as n−1σ2a2s−4

1 {(1−a2
1)(s−1)2+a2

1}+O(n−3/2)
and tends to zero as the sample size approaches infinity. The one-step ahead mean
squared prediction error is σ2 + 2n−1σ2 when fitting overfitted AR(2) model while
only σ2 + n−1σ2 when fitting correct AR(1) model.

3. Coverage probability of naive prediction intervals

Consider the naive s-step ahead prediction interval P̂Is(α) for Xn+s defined in
(11). There are two kinds of coverage probabilities:



Prediction in AR processes 399

1. For fixed sample information X = (X1−p, . . . , Xn)′ (and thus fixed Xn, â, σ̂2

and P̂Is(α)) is the conditional probability

CP[P̂Is(α)|â, σ̂2,Xn] = P [Xn+s ∈ P̂Is(α)|â, σ̂2,Xn]

= Φ
(
zα

√
V (s)−1V̂ (s) + V (s)−1(X̂n+s − X̄n+s)

)
,

because the conditional distribution ofXn+s is normal with mean X̄n+s and variance
V (s). Here Φ(t) denotes the distribution function of standard normal distribution
and zα = Φ(α)−1 its α-quantile.
2. From sample to sample, the conditional coverage probability is random because
P̂Is(α) depends on â and Xn. The unconditional (overall) coverage probability for
the prediction interval procedure is

UCP[P̂Is(α)] = P [Xn+s ≤ X̂n+s + zα
√
V̂ (s)] = E

{
CP[P̂Is(α)|â, σ̂2,Xn]

}
,

where the expectation is w.r.t. the random â, σ̂2 and Xn.
Beran (1990) has shown in his Example 1 that UCP[PI∗1(α)] = α−(2n)−1zαφ(zα)+

o(n−1) for the AR(1) process with known mean and σ2 = 1 also known. We extend
this result to general order and give the order of error. We have
Theorem 1. Assume that {Xt}n

t=1−p is strictly stationary AR(p) process defined
in (1), where var et = σ2, the order p and expectation µ are known. Let the param-
eters a = (a1, . . . , ap)′ be estimated by a∗ defined in (7). Let X∗

n+1 be defined as
µ+
∑p

j=1 a
∗
j (Xn+j−1−µ). Then the overall coverage probability of the naive one-step

ahead prediction interval PI∗1(α) = [−∞, X∗
n+1 + zασ] is

UCP[PI∗1(α)] = α− (2n)−1pzαφ(zα) +O(n−3/2),

where φ(t) = (2π)−1/2 exp(−t2/2) is the density of N(0, 1).
Proof. Without loss of generality assume µ = 0. Since σ2 is known, V (1)∗ =

V (1) = σ2 and PI∗1(α) = (−∞, X∗
n+1 + zασ).

The conditional coverage probability is CP(PI∗1(α)|a∗,Xn) = Φ(zα + δn), where
δn = σ−1(X∗

n+1 − X̄n+1).
The distribution function of Gaussian distribution has continuous derivatives of all
orders, thus the Taylor expansion yields

(22) CP(PI∗1(α)|a∗,Xn) = α+ δnφ(zα) +
δ2n
2
φ′(zα) +

δ3n
6
φ′′(zn),

where zn is random variable between zα and zα + δn.
Since both X∗

n+1 and X̄n+1 are unbiased predictors for Xn+1 (Fuller and Hasza,
1980, Cryer et all, 1990), we have

(23) E δn = 0.

Rewrite

σ2δ2n = (X∗
n+1 − X̄n+1)2 =

[ p∑
j=1

(a∗j − aj)Xn−j+1

]2 = X ′
n(a∗ − a)(a∗ − a)′Xn.

Following Fuller and Hasza (1981), the conditional expectation is

σ2E {δ2n|Xn} = n−1σ2X ′
nΓ−1Xn +O(n−3/2),

where Γ = E {XtX
′
t} as in section 2. Using formula for the expectation of quadratic

form we find



400 Petr Zvára

E δ2n = n−1E
{
X ′

nΓ−1Xn

}
+O(n−3/2)

= n−1
[
E {Tr(Γ−1var Xn)} + E X ′

nΓ−1E Xn

]
+O(n−3/2)

= n−1p+O(n−3/2).

(24)

Since φ(t)′′ is product of a polynomial and exp(−t2/2), it is bounded, thus
|φ(zn)′′| ≤M1 for some M1 > 0. Rewrite

σ3δ3n =
p∑

j=1

p∑
k=1

p∑
l=1

(a∗j − aj)(a∗k − ak)(a∗l − al)Xn−j+1Xn−k+1Xn−l+1.

We have

σ3E |δ3n| ≤
∑
j,k,l

E {|a∗j−aj| . . . |Xn−j+1| . . . } ≤
∑
j,k,l

6

√
E
{
|a∗j − aj |6

}
. . .E

{
|Xn−j+1|6

}
. . .

from Holder inequality. Now M2 = E
{
|Xt|6

}
is finite because Xt is Gaussian, thus

E|δ3n| ≤ σ−3
√
M2

∑
j,k,l

6

√
E
{
|a∗j − aj|6

}
E
{
|a∗k − ak|6

}
E
{
|a∗l − al|6

}
.

Following Bhansali and Papangelou (1991), E
{
|a∗j − aj |6

}
= O(n−3) and we find

E |δ3n| = O(n−3/2). Finally

(25) E
{
|δ3nφ(zn)′′|

}
≤M1E |δ3n| = O(n−3/2).

Combining (23), (24), (25) and φ(t)′ = −tφ(t) and inserting into (22) we obtain

E
{

CP(PI∗1(α)|a∗,Xn)
}

= α− (2n)−1pzαφ(zα) +O(n−3/2),

which was to be shown. Q.E.D.
We could extent our theorem to the model with unknown mean provided the

result of Bhansali and Papangelou (1991),

E
{
|âj − aj |k

}
= O(n−k/2), 0, . . . , p

is valid for such model. Unfortunately as far as we know, there is no such gener-
alization in the literature. The formula for the more general case, not proven yet
would be

UCP[P̂I1(α)] = α− (2n)−1(p+ 1)zαφ(zα).
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