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SOME NOTES CONCERNING PREDICTION IN AR PROCESSES

PETR ZVARA

ABSTRACT. The prediction of the (n+s)-th observation of the p-th order autore-
gressive process is studied. The mean squared error of the predictor (MSEP)
when the autoregressive parameters are estimated by least squares is obtained
to terms of order n~! for some low order processes. It is shown that model
overfitting increases MSEP. The naive prediction interval for X, obtained
by employing the estimated autoregressive model for prediction is considered.
The overall coverage probability is evaluated to order n~! in a special case. It
is lower than the nominal one, because such prediction procedure ignores the
uncertainty in the model parameters.

B pabore m3yuaercs NpOrHo3MpoBaHUe 3HAUEHUA X,is B IPOIECCE aB-
TOperpeccuu MopsKa p C HeM3BeCTHbIMU Koeduimentamu. lIpuseneHHo
SIBHOE BBLIDAKEHME [JUIf UJIeHa [MOPAAKA M~ | CpeaHeKBaAPATUUECKOH O-
mOKY IPOrHO3a B HEKOTOPBIX MOAeJsX. Jlasee pacCMOTPEH HAWBHEIA WH-
TepBaJbHBII IPOrHO3 M1 X4 s, IOCTPOEHHBIH C IOMOIIIO OIIEHOK HEU3BECT-
HBIX IIapaMeTpPOB. B YaCTHOM CJiy4dae BBIUMCJICHA €ro HaAe*KHOCTh.
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1. INTRODUCTION

Let the autoregressive time series {X;} satisfy

P
(1) Xt:ao—l—Zant_j—i—et,t:1,2,...,n,
j=1

where {e;} is a sequence of independent N (0, 0?) random variables and X, X_1, . .

Y

X1—_p are given random variables. The characteristic equation associated with model

(1) is

P
(2) 2P — Zajzp*j =0.
j=1

We assume that the process is a strictly stationary normal process, hence the
roots of (2) are less than one in absolute value and Xy, ..., Xi_, are normal random
variables with the same covariance structure as X;,—1,...,X; forallt > 1 —p.

We adopt a standard multivariate representation for the process (1). Let X, =

(Xt, Xi—1,. .., Xt—pt1,1) and e, = (e4,0,...,0)". Then we have

(3) Xt :AXt,1 —l—et,
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where
a1 a2 ap—1 Qap Qo
1 0 0 0 O
0o 1 0 0 O
A =
o 0 ... 1 0 0
0 O 0 0 1

~ The least squares predictor of X,is given a past history {Xi—p,..., Xy} is
Xnts = ao + Z§:1 ajXnts—j, where X; = X; if t < n. If the parameters a =

(a1,...,ap,a0) and o? must be estimated, the predictor
A p A A
(4) Xnjs=t0+ Y 4 Xniej, Xe=X,ift <n
j=1
is obtained by replacing the unknown a by an estimator @ = (1, ..., ap, o).

There are a number of commonly used estimation procedures for stationary
X;. In this text we consider the maximum likelihood estimators conditioned on
Xo,...,X1-p (least squares estimators)

n n n
G a=0 XX ) O XeaXe), 2 =0t (X - X ,a)°
t=1 t=1 t=1

We employ slightly different notation when the expectation u = E X; is assumed
to be known. Then ag is not to be estimated and the model (1) can be written as

p
(6) Y}/:Z(L]‘Y}/,j-l-et,t:l,Q,...,n,
j=1

where Y; = X; — p. The multivariate representation for (6) is Y = BY ;1 + ey,
where Y, = (Y3,...,Y;—p+1) and

a; az ap—1 Qp

1 0 0 0
B_|o0 1 0 0
0 0 1 0

We define the least squares estimators a* and o2* as

M a = YY) OV, o =0Tt (V- Y, a2
t=1 t=1

t=1

The predictor of X, associated with a* is
P
(8) X =Y om Yy =Y alYr o Y =X, —pift<n
j=1

Fuller and Hasza (1980, Th. 1) investigated an AR(1) model and showed that the
predictor (4) is unbiased for symmetric error distributions. Cryer, Nankervis and
Savin (1990, Th. 6) extended their results to predictors based on fitted ARMA (p, q)
models with exogenous nonrandom regressors.
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Fuller and Hasza (1981, Cor. 2.1.) obtained an approximation for the variance of
the predictor error X,, 45 — X,,+s through terms of O(n~!). They have shown that
E{(Xn+s — Xnis)?} is the upper left element of the matrix

s—1 s—1s—1
> A MAT +n 152 I MA'*
() — §=0 k=0

x Tr{(A*7'T) (DA F 1)} + O(n=?%/?),

where T' = E{X; X} and M is a matrix with one as the upper left element and
zeros elsewhere. For s = 1 we have E{(X, 11 — Xn41)2} = o2[L +n Lp+ 1) +
O(n=3/2). In section 2 we evaluate (9) for general prediction period s in some low
order autoregressive models.

Since X,,+s is a random variable, a predictive region is relevant. Let V(s) =
o? Zj;é w?, where the {w;} satisfy difference equations

p
wj—Zaiwj_i:O, j=1,2,...
i=1

subject to the initial conditions wy = 1 and w; = 0 for j < 0. Then for a given
a € (0,1), a natural one-sided 100a% predictive interval for X, is

(10) PL(a) = [-00, Xpts + 2aV/ V(s)],

since the conditional distribution of X, ;s given {Xi1-p,..., X, } is normal with mean
Xn+s and variance V (s) (Montgomery et all, 1990).
A naive prediction region for X, 1, commonly used in textbooks on applied time

series analysis as for example Montgomery et. all (1990) is a random set

(11) PL(a) = [~00, Xpss + 20/ V(5)]
obtained by substituting the estimated parameters into (10). More precisely, Xn+s
is defined in (4) and V(s) = 62 2871 121]2., where W; satisfy

p
Wy — Y b =0, j=12...
i=1

subject to wy = 1 and w; = 0 for j < 0.When p is known, we define similarly PT; («)
as a prediction region for X, ;s based on a*.

The overall coverage probability of f’\Is(a), PlX,4s € PI, ()] is less than « due
to the ignored increase in the mean squared error of prediction when employing the
estimated autoregressive model for prediction. In section 3 we evaluate the overall
coverage probability of the naive one step ahead prediction interval PIj(«) through
terms of O(n~1) assuming the variance of e; is known.

2. MEAN SQUARED ERROR OF PREDICTION IN SOME LOW ORDER
AUTOREGRESSIVE PROCESSES

Using similar arguments as in Fuller and Hasza (1981), one can show that when
the expectation p is known, the variance of X, s — X7, is the upper left element
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of the matrix

(12)
s—1s—1
QZB’ BY 40 1022 B MB'*
7=0 k=0

x Te{(B* 7 'Ty) (Ty' B F 1)} + 0(n=3/?),

where T'y = E{Y;Y}} and M is a matrix with one as the upper left element and
zeros elsewhere.

2.1. AR(1) process. Consider first the AR(1) model with unknown expectation
(13) Xt :a0+a1Xt_1+€t, t:l,...,n,

where e; ~ N(0,02), |a1| < 1 and Xo ~ N(ag(1—a1)~t,0%(1—a?)~!). The predictor
is Xpts = Go + a1 Xngs—1, where X, 15 = X5 for s <0 and

. 1
ary _ S XP o Y X X1 Xy
ao Dt X1 n 11 Xt '

In this case we have
(a1 ao
A= (0 g ) .

j i1 i
i_ (a1 ey a
=)

Matrix multiplication yields

and

jtk
J 'k _ (@ 0
o o ()

Evaluating moments of X; up to second order, we find

2 a,
]

1

17(11
Calculating the trace of (A*777'T) (D' A**~!) many terms vanish and we have
(15) Tr{(As—j—lr)/(F—lAs—k—l)} 14+a 28 —j—k— 2
Combining (14) and (15) yields

s=ls—1 ) ' 2 25—2 1-a; )
ZZAJMA kTr{(As—]—lr)/(r—lAs—k—l)} _ (S aj + (1_a1> 0) )
=0 k=0

Inserting into (9) we have
A = . 1 S92
E{(Xnts — Xnys)’} =0° ZG%J +nto?s%a3 2 £ nto? (l—al) +0(n=%/?),
3=0

which is Theorem 2 of Fuller and Hasza (1980).
When the expectation of X; is known, Tr{(B* 7~ 'T'y ) (T'y' B*™*71)} simplifies

2s—j—k—2

to ai and we find

(16) E{( n+s = n+€ }_O-QZG +n” 10.282a%9 2+O(’I’L_3/2),
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2.2. AR(2) process. Consider now the strictly stationary AR(2) model with zero
expectation

(17) Xi=a1 Xy 1+aXy o+e, t=1,....,n,

where e; ~ N(0,0?). The predictoris X}, , = aiX; . +a3X;, 5, where X}, =
Xpts if s <0 and

* —1
ay\ _ 2 11 X7 ?:%Xt—lXtﬂ Z:l X1 Xy )
as o Xe1 Xeo D X =1 Xt—2X¢

The parametr matrix of multivariate representation for (17) is

(a1 a2
B- (1 0) .
Denote the roots of characteristic equation 22 — a1z —ag = 0 by z; and z2, then
a1 = z1 + 22 and ag = —z129. Stationarity condition implies that |z;| < 1,7 =1,2.
The zero mean AR(1) process is a special case of (17) when z3 = 0.

Denote the rows of B by ro = (1,0)" and r; = (aj.a2)’. Then the rows of B’
are r; and rj_;. They satisfy the relation r; = a17;-1 + asr;—2. Solving these
difference equations subject to initial conditions above, we obtain
1 (z{Jr1 zé“ zlzgﬂ z{“@)

Bl =
J
2] — 23 2125 — 2] 29

zZ1 — 22
Matrix multiplication yields
B L ((z{“ A ) e z&)) |
(1 —22)* \ (e —2)(5 " — &) (s —23)(zF — 25)
Using the relation Z o Y2l = (1—2%)(1—2)"Lif|z] < 1, we find that the upper left
element of 57" BPM B is

1 1— 23 1— (2122)" 1— 228
18 2 1 _ 2 2 2
(18) (21 —22)2{21 1—2% “122 1— 2129 2122 }

The matrix of second moments of X is

1 z1+22
r= FY - E{(Xthtfl)l(Xthtfl)} =" ( 214292 1+i122> )
142122

where 79 = E X7 is the variance of the process. The inverse is

! =t L+ 2129 1+2z120 —21— 22
O 1-22)1-2) \—z1—22 1+z2
Multiplicating
— ke _ 14+ 2129
T 1Bs k 1: 1
== A - )
T B kI e (B (= B )
27 (1= 27) - S (1-23) 2125 T = 23) — 277 (1 - 23)
and
FBS Jj—1r _ o

(1 + z1292)(21 — 22)

S— ‘ 5T ! > !
AU -B) -5 (-2 2 (1—22)—z2 711 = 22)
fog+1(1 _ Z%) _ Z;*J+1(1 _ z%) 7](1 — 22) - Zg (1 - Z%) 7
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we obtain
TI,{(Bsfjflr)/(I\lesfkfl)} _ 2{ 2122 fs j—k—2 _l_zgsfjfka)
21 — 22

— (1= D= DT T T )

Using relation Y, _ 021 bas™17F = (23 — 25)(21 — 22)"! = K say, we find that the

upper left element of the matrix

|
—_

|
—_

S S

B'MB*Te{(B*7-'T) (T 'B*F 1)}

7=0 k=0
is
(1 —z122) 2( 25 | .25
W{K zl —|—22) —2Ks(ziz0 + 2125) + s ( 27° + 25 )}
(19)
1—23)(1 -
+ %{ﬂ@zl@ —2Ks(zi T 4+ 25T + 2572525 .
1= 22
Inserting (18) and (19) into (9) we obtain
(20)
o2 — 22 1 — (z1292)* 1— 228
E _ 2 _ 1 2 2 2
{( n+s n+s) } (21 _22 2{ 1 1_ 2 2122 1— 212 27 —Z%

1—
—102( 2122

+n G n) {K2 224 22) — 2K s(z722 + z125) + SQ(Z%S + 239)}
1 — 22)

1— 1-—
+ n*aQW{QKQzle —2Ks(2 T 25t 2572525 }.
(21 — 22)
When s = 1 we have K =1 and find E{(X,,41 — X} ,1)?} = 0%(1 +2n~1), which is
the same expression as that obtained by other authors.

2.3. Application. As an application of the result (20) we can evaluate the effect
of overfitting on the mean squared prediction error. Let z2 = ag = 0 in (17) which
implies a; = z;. Thus we fit the AR(2) model when the true model is AR(1). Then
(20) reduces to

(21)

1—a2 _
E{( n+s n—H) }—U ! lo?

T2 +n o (s —1)2a2* +n 10225022+ O(n/?).
—ay

Since (s—1)2+2sa?—s%a} = (1—a?)(s—1)?>+a? is always positive, we infer from (16)
and (21) that overfitting the zero mean AR(1) model by one additional autoregressive
parameter results in increase of the mean squared prediction error. The amount of
increase can be analytically expressed as n~'o2a?* " *{(1—a?)(s—1)?+a?}+0(n=3/?)
and tends to zero as the Sample size approaches infinity. The one-step ahead mean
squared prediction error is 02 + 2n~!o? when fitting overfitted AR(2) model while
only 02 + n~1o? when fitting correct AR(1) model.

3. COVERAGE PROBABILITY OF NAIVE PREDICTION INTERVALS

Consider the naive s-step ahead prediction interval f’\Is(a) for X,,+s defined in
(11). There are two kinds of coverage probabilities:
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1. For fixed sample information X = (X;_,,...,X,)" (and thus fixed X,, a, 62
and PI,(a)) is the conditional probability

CP[PL(a)|a, 62, X ] = P[X, 1. € Pli(a)]a, 62, X,]
= (2a\/V() V() + V() (Knis = X)),

because the conditional distribution of X,, | s is normal with mean X,, | s and variance
V(s). Here ®(t) denotes the distribution function of standard normal distribution
and z, = ®(a)7! its a-quantile.

2. From sample to sample, the conditional coverage probability is random because
PI, (a) depends on @ and X ,,. The unconditional (overall) coverage probability for
the prediction interval procedure is

UCP[PL(a)] = P[Xpis < Xnts + 2a\/ V(s)] = E {CP[PL(a)|a, 67, X ]},

where the expectation is w.r.t. the random @, 42 and X,,.

Beran (1990) has shown in his Example 1 that UCP[PI} ()] = a—(2n) " 1z20¢(24)+
o(n=1) for the AR(1) process with known mean and 02 = 1 also known. We extend
this result to general order and give the order of error. We have
Theorem 1. Assume that {X;}}_,_,, is strictly stationary AR(p) process defined
in (1), where vare; = o2, the order p and expectation u are known. Let the param-
eters a = (a1,...,ap) be estimated by a* defined in (7). Let X, | be defined as

1+ Z§:1 aj(Xn+j—1—p). Then the overall coverage probability of the naive one-step
ahead prediction interval PI(a) = [—00, X5\ + 240] is

UCP[PT} ()] = & = (21)~'pzadi(2a) + O(n™*/?),

where ¢(t) = (2m) /2 exp(—t%/2) is the density of N(0,1).

Proof. Without loss of generality assume pu = 0. Since o2 is known, V(1)* =
V(1) = 02 and PIj(a) = (—00, X} 1 + 2a0).
The conditional coverage probability is CP(PI](a)la*, X,) = ®(z4 + 05), where
0 =0 N X5y — Xng1).
The distribution function of Gaussian distribution has continuous derivatives of all
orders, thus the Taylor expansion yields

2 3
(2)  CP(PT(@)la’, Xn) = 0+ 0a(z0) + 2 (20) + 22" (20),

where z;, is random variable between z, and zo + dy,.
Since both X, and X, are unbiased predictors for X, 1 (Fuller and Hasza,
1980, Cryer et all, 1990), we have

(23) Ed, =0.
Rewrite
P
* Vg * 2 * *
0% = (X1 = Xnp1)” = [D_(a) — ;)X j11]” = X} (a" — a)(a” — a) X,
j=1

Following Fuller and Hasza (1981), the conditional expectation is
o2E{%| X, ) =n"1o? X/ T71X, + O(n~%/?),

where I' = E { X, X} } as in section 2. Using formula for the expectation of quadratic
form we find
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Ed, =n'E{X,I7'X,} +O0(n*?)
(24) =n L [E{Te(P"tvar X,,)} + EX/ T 'EX,] + O(n~%?)
=n"lp4+ O(n3/?).

Since ¢(t)” is product of a polynomial and exp(—t2/2), it is bounded, thus
|p(2n)"| < My for some M; > 0. Rewrite

p P P
o*08 =3 "3 (a) — ay)(aj — ar)(af — an)Xn—j1 Xn—kr1 Xn—141.
j=1k=11=1

We have

PE03] <> E{laj—a;] .. | Xnjial... } < g/E{|a; —a;j|%} .. E{|Xp_j11]} ...

VL Jsk,l
from Holder inequality. Now My = E {|Xt|6} is finite because X; is Gaussian, thus
B3| <o/ Y (/B {la3 — a1 VE {|aj — ax[6}E {jaf — anl*}.
gok,l
Following Bhansali and Papangelou (1991), E {|a} — a;/°} = O(n™?) and we find
E|63| = O(n=3/?). Finally
(25) E{|676(z0)"I} < ME|53| = O(n~*/2).
Combining (23), (24), (25) and ¢(t)’ = —t¢(t) and inserting into (22) we obtain
E {CP(PIT (a)|a*, Xn)} =a— (2n)_1pza¢(za) =+ O(n_B/Q)v

which was to be shown. Q.E.D.
We could extent our theorem to the model with unknown mean provided the
result of Bhansali and Papangelou (1991),

E{|€L] —aj|k} = O(nik/z), O,...,p

is valid for such model. Unfortunately as far as we know, there is no such gener-
alization in the literature. The formula for the more general case, not proven yet
would be

UCP[PLi(a)] = a — (2n) " (p + 1)2a(2a).
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