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REGRESSION WITH HIGH BREAKDOWN POINT

JAN ÁMOS VÍŠEK

Abstract. The paper discusses in details various aspects of the point esti-
mation, classic paradigm, Hampel’s program and a new paradigm, including
reliability of algorithm and its implementation, the role of accompanying pro-
cedures and of heuristics. A special attention in paid to the high breakdown
point estimation, corresponding prejudices and misleading ideas. It reports the-
oretical results as well as practical consequences, describes a reliable algorithm
for evaluation of the least trimmed squares and finally illustrates by the results
of analysis of real data how powerful tool the estimators with high breakdown
point can be.
Stat~� podrobno obsu�daet razliqnye asspekty ocenok v klasiq-

esko�paradigme, v Gampelove i v novo�paradigme, kotora� vkl�qaet

dostovernost~ algoritma i to�e implementacii, mesto sopro�d�wih

procedure i geuristiki. Special~noe vnimanie posveweno oceni-

vani� s vysokim bodom otkazani�, k nim prinadle�a�wye pred-

passudki i oxiboqnye predstavleni�. Ona prinosit teoretiqeskie

rezul~taty toqno kak i praktiqeskie sledstvi�. Opisyvaet dos-

toverny� algoritmus dl� vyqisleni� na�menxih otrubanyh kvadra-

tov i potom prinosit kak ilustraci� rezul~taty analyza real~nyh

dannyh i pokazyvaet kak mownym instrumentom mogut byt~ ocenki

s vysokim bodom otkazani�.

Introduction and notation

It is sometimes claimed that nearly 95% of statistical applications are from re-
gression analysis. Of course, such a claims have their roots in fact that not only
linear regression is taken into account but also nonlinear models, analysis of vari-
ance, logit and probit (or generally probability) regression models, regression trees,
over seemingly unrelated equations up to, maybe, cointegration analysis. However,
it is not important how large the percentage of regression tasks really is, if it is
95% or “only” about 80 %. In any case, a large number of problems solved in the
framework of regression analysis indicates that we should pay an attention to the
following question:

What features of modern estimator of regression model we should ask
for ? What accompanying equipment of the (robust) estimator is to in-
clude ?
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The present paper tries to find an answer to the question by discussing related
topics, starting with a bit of history over some well-known stories which appeared
in developing robust analysis and finishing with an illustrative example.

The regression analysis is for the most of its users still connected with the least
squares and of course with names of Adrien Marie Legendre (1805) and Carl Friedrich
Gauss (1809). Although both Gauss as Legendre used the least squares for fitting
models to data, it was Sir Francis Galton (1885) who gave the name to the branch.
He used the least squares due to their simplicity in comparison with others methods,
however it may be of interest that at least three statistical problems which would by
today classified as regression analysis, were solved before Legendre and Gauss and
what is even more interesting, they were solved by L1 technique, see Galilei (1632),
Boscovisch (1757) and Laplace (1793).

It is well known that there was a discussion between Ronald Alyner Fisher and
Francis Ysidor Edgeworth which method is to be used but further development con-
firmed Fisher’s “solution” who preferred the least squares before L1-approach. Of
course, the main reason was the fact that this method offered a “simple” formula for
the estimator and hence it was feasible to compute it. As we shall see later, this is
and will be probably one of key requirement for any estimator to be useful, namely
an existence of a feasible and reliable algorithm(and better an available implemen-
tation of it). A lot of theoreticians in past considered “the process of establishing a
new estimator” to be finished when the theoretical properties as the consistency, the
asymptotic normality and representation were proved. Nowadays, it is very clear
that it is not true. A “discovery” of a reliable algorithm, implementation of it, eval-
uating the (approximation to the) estimator is a reasonable time, verification that
the algorithm gives really good results and developing of the “accompanying” pro-
cedures (as alternative estimator for the situations when collinearity or dependence
between explanatory variables and disturbances appear and corresponding tests for
recognizing that) are also very important. Without all this “equipment” the esti-
mator is handicapped, if not disqualified at all. For further discussion see V́ı̌sek
(2000 d).

First of all, let us introduce notations. LetN denote the set of all positive integers,
R the real line and Rp the p dimensional Euclidean space. We shall consider for any
n ∈ N the linear regression model

(1) Yi = XT
i β0 + ei, i = 1, 2, . . . , n

where Y = (Y1, Y2, . . . , Yn)T is the response variable, {XT
i }ni=1 (Xi ∈ Rp) is a se-

quence of vectors of explanatory variables, β0 is the “true” vector of regression coeffi-
cients and {ei}ni=1 (ei ∈ R) is a sequence of independent and identically distributed
random variables, representing random fluctuations (or disturbances, if you wish;
since the disturbances is shorter, we shall use it). The upper index “T” indicates
transposition. (As implicitly follows from this notation, we shall assume all vectors
to be column ones.) Finally, let us denote for any n ∈ N by X = (XT

1 , XT
2 , ..., XT

n )
T

the design matrix and by e = (e1, e2, ..., en)T the vector of disturbances. Then we
can rewrite (1) into (sometimes) more convenient form

(2) Y = Xβ0 + e.

We have omitted an indication of the dimension of matrix and of vectors which
would presumably unnecessarily burden the notation. Let us notice that in the
case that the intercept is included in the model the first coordinates of all vectors
Xi’s are assumed to be equal to 1. In other words, if the explanatory vectors Xi’s
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are assumed to be random, they have degenerated first coordinate. There are of
course, except of special cases, well-known reasons for inclusion of the intercept
into the model. Let us realize that in the case when we decide not to include
intercept into the model we implicitly assume, in some sense, an absolute character
of data and in fact simultaneously give up otherwise natural requirement of scale-
and regression-equivariance of the estimator of the regression coefficients. That is
why we shall assume in the rest of paper that the intercept is included into the model
(there is, of course, at least one other reason for it, for details see V́ı̌sek (1997a, b).

The least squares and classic paradigma of estimation

Let us recall that the (ordinary) least squares estimator of β0 is given by

β̂(LS,n) = argmin
β∈Rp

n∑
i=1

(Yi − XT
i β)2 = argmin

β∈Rp (Y − Xβ)T(Y − Xβ)

which yields
β̂(LS,n) = (XTX)−1 XTY

where we have assumed that X is of full rank (since in the paper only cross-sectional
data will be assumed, this is not substantial restriction of generality).

May be that it is only a statistical folklore but probably already Sir Francis Galton
really knew a formula describing sensitivity of the least squares with respect to the
deletion of one observation. It reads

β̂(LS,n) − β̂(LS,n,	) =
(
X{	}TX{	}

)−1
X	
(
Y	 − XT

	 β̂(LS,n)
)

where X{	} is design matrix without the -th row. We shall need it later.
It is clear that one can propose an estimator in thousand ways but then it is

necessary to prove that such estimator fulfills some collection of desirable properties.
Again one may prefer these and other may ask for another features of estimator but
we will presumably agree that there is a set of requirements which we all would ask
for. Such collection may be called a classic paradigm. It has probably following
items

• (unbiasedness),

• (
√

n-)consistency,

• (asymptotic) efficiency,

• asymptotic normality.

The round brackets around the word unbiasedness should indicate that for many
estimators, especially for modern ones, we are not able to prove unbiasedness. Some-
times we even know that the estimator is not unbiased. In such a case we put up
with asymptotic unbiasedness and/or even with consistency (only). A similar facts
are indicated by the round brackets in the case of the consistency and the efficiency.

Robust approach and Hampel’s program

The very beginning of robust studies are connected with name of John Tukey
who in forties began studies of model for contamination of data. Although later
there appeared some technical reports by him on problems with the contamination
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of data, a substantial progress began in middle sixties and is associated with Peter J.
Huber and Frank R. Hampel. The first one initiated an approach based on (nearly)
strict application of classic statistical principles (as e. g. maximum likelihood or
the least favorable pair of distributions) but in his framework instead of (parame-
terized) families of distribution functions, families of “neighborhoods” of families of
distribution functions are taken into account. Converted commas around the word
neighborhoods hints that we do not have in mind in this case neighborhoods in the
topological sense (i. e. open sets) but some sets which contain a central model for
disturbances, as an inner point. This central model is usually one of classic stochas-
tic models, e. g. (standard) normal model (an example of such a neighborhood will
be given below - see definition of min-max bias estimator).

Hampel’s approach is based on the interpretation of any estimator as a func-
tion(al) of empirical distribution function and the studies of properties of the esti-
mator are performed then by means of the derivative along some trajectory in the
space of all distribution functions. To clarify this let us give a simple example, using
the most frequently used statistics, the mean. To make the explanation correct, we
shall use somewhat more complex notation than it is usual.

First of all, let us realize that we “interpret” the mean as a sum of n numbers
divided by n but, as the statistics, that is sum of n random variables divided by n.
So let us consider a sequence of independent identically distributed random variables
{Zi(ω)}∞i=1, defined of course on a basic probability space (Ω, C, P ). Then for any
ω ∈ Ω we have Z̄(ω) = 1

n

∑n
i=1 Zi(ω).

Secondly, let us recall what is the empirical distribution function for the consid-
ered sequence of random variables. Let us denote by IA(ω) the indicator of the set
A, i. e. IA(ω) = 1 if ω ∈ A and IA(ω) = 0 otherwise. We usually speak about
empirical distribution function in the context of having at disposal of z1, z2, ..., zn,
the realization of the first n random variable. Then we consider the empirical distri-
bution function as a step functions, having all steps of magnitude equal to 1

n at the
points z1, z2, ..., zn. We shall denote this empirical distribution function by Fn(z).
The realization z1, z2, ..., zn is nothing else than the value of the corresponding ran-
dom variables at some point ω0, i. e. z1 = Z1(ω0), z2 = Z2(ω0), ..., zn = Zn(ω0). The
empirical distribution function, now considered as a statistic, at any ω ∈ Ω is given
as

F(n,ω)(z) =
1
n

n∑
i=1

I{Zi(ω)≤z}(ω).

Finally, let us return to themean. Since we have z1 = Z1(ω0), z2 = Z2(ω0), ..., zn =
Zn(ω0), we obtain

Z̄(ω0) =
1
n

n∑
i=1

Zi(ω0) =
1
n

n∑
i=1

zi

=
∫
z∈R

zdFn(z) =
∫
z∈R

zdFn(z, ω0).

The verification of the equality needs a few second, if we meet with such arguments
(and notation) for the first time but principally is straightforward.

The last equality shows that Z̄(ω) = T (Fn,ω(z)), i. e. the empirical mean can be
interpreted as a functional T of the empirical distribution function. A theoretical
counterpart of it is the fact that the “theoretical” mean is the same functional T
of the theoretical distribution function, say F . Hampel’s approach then employs
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derivatives of functionals (as Frechét or Gâteaux) to study the properties of given
estimator.

To make Hampel’s approach applicable for a wide class of estimators we usually
do not ask for existence of Fréchet or Gâteaux derivative but we try to find derivative
of corresponding functional along such trajectories which go from the central model
to the distribution function degenerated at a point z ∈ R. In other words, the
influence function is defined as

IF (z, F, T ) = lim
h→0

T ((1− h)F + h · z)− T (F )
h

at the points where the limit exists. After all, as the name of the function hints, the
influence function indicates an influence of one additional observation, when we put
it at point z, on the value of the estimate. That is why some other characteristics
of robust estimators are defined utilizing it.

Nowadays the offer of robust procedures is nearly infinite. (Of course, we speak
now about theoretical results, not about available implementations.) But it is still
possible to claim that M -, L- and R-estimators are the most popular classes. The
first inherited the name from the maximum likelihood estimators since the most of
M -estimators are similar to the maximum likelihood estimators, hence Maximum-
likelihood-like estimators. The second class is based on Linear combination of order
statistics and the third one employs the Rank statistics. Since in what follows we
shall need M -estimators, let us recall that they are given by

(3) β̂(ψ,n) = argmin
β∈Rp

n∑
i=1

ρ(Yi − XT
i β)

where the superindex ψ indicates that the derivatives of ρ (which stays in the normal
equations which are in turn used for finding the value of M -estimator) is just ψ.

And quite unexpectedly there appeared one problem which was not felt so acute
when the classic, we mean maximum likelihood, moment estimators, etc., were
used. The problem was that the robust estimators were not generally scale- and
regression-equivariant. Since the requirements of the scale- and regression-equivariance
represents the fact that it should be irrelevant how the axes and units of measure-
ment were selected, they are not only very natural but from the application point
of view nearly unavoidable. The estimators which does not possess these properties
are seriously handicapped in the applications.

The statisticians were aware of it but they (tacitly) believed that the studen-
tization of residuals (in the case of robust estimators of regression coefficients) by
means of a preliminary scale-equivariant estimator of standard deviation is the rem-
edy. It appeared that the requirements on the estimator of standard deviation have
to be enlarged, namely that it must be also regression-invariant - to reach scale- and
regression-equivariance of the estimator of regression coefficients, see Bickel (1975)
or Jurečková & Sen (1993). In other words, (3) has to have the form

β̂(ψ,n) = argmin
β∈Rp

n∑
i=1

ρ(
Yi − XT

i β

s
)

where s is an estimate of standard deviation which is scale-equivariant and regression-
invariant. However it is not very easy to find (theoretically) such estimator, leaving
aside that the evaluation would be complicated. Nowadays there are only a few
proposals of such estimators, see again Jurečková & Sen (1993) or V́ı̌sek (1999a)
(the latter even without a theoretical background, being still only implemented and
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numerically tested). So it seems that it is preferable to employ the robust estima-
tors which are scale- and regression-equivariant, without any studentization. We
shall employ in the rest of this paper two such estimators, having moreover high
breakdown point.

The study of the influence function led to establishing some characteristics of
robust estimator. Later they were “collected” into a list which became known as
Hampel’s program. It may be viewed as an enlargement of classic paradigm. It reads

• acceptably low gross-error sensitivity,

• maximal attainable efficiency,

• not very large local shift sensitivity,

• preferably finite rejection point,

• as high as possible breakdown point.

Before giving definitions and an explanation of items of Hampel’s program let us
remark that the word “enlargement” is of course meant in a somewhat vague way.
E. g. for most of robust estimators we are not able to prove unbiasedness. As we
have already argued, they are defined (typically) by an extremal problem and hence
there is not usually any (simple) formula for them. It makes a proof of unbiasedness
nearly impossible. We usually put up with consistency.
DEFINITION 1. Gross-error sensitivity is given as

(4) γ(T, F ) = sup
z∈R

|IF (z, F, T )| .

An idea which is behind the definition of the gross-error sensitivity is given by
relation

(5)
√

n
(
β̂(ψ,n) − β0

)
=

1√
n

n∑
i=1

IF (zi, F, T ) + remainder term

which can be derived for M -estimators, see Hampel et al. (1986), p. 85. So
IF (zi, F, T )) is a contribution of the observation zi to the value of the estimator.
On the other hand, we may consider the contribution of the i-th observation to be
the sensitivity of the estimator to the i-th observation. On the other hand, as the
sensitivity of the estimator to the i-th observation one usually considers the value of
the change of estimator when the i-th observation is deleted from data.

Does it coincide with the idea which is “behind” the gross-error sensi-
tivity?

The answer is: Sometimes yes sometimes no.
The asymptotic representation of the change ofM -estimator of regression coefficients
is generally given by

(6) n
(
β̂(ψ,n) − β̂(ψ,n,	)

)
= −κ−1Q−1X	ψ

(
Y	 − XT

	 β̂(ψ,n)

σ̂n

)
+Rn as n → ∞

where

κ = σ̂nIEψ′
(

e

σ̂n

)
+

s∑
k=1

f(σrk) [ψ(rk+)− ψ(rk−)]
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with r1, r2, ..., rs being points of discontinuity (if any) of corresponding ψ-function
and

Rn =
(

W (
n∑
i=1

µ
(j)
i1 (n, t, u)),W (

n∑
i=1

µ
(j)
i2 (n, t, u)), ...,W (

n∑
i=1

µ
(j)
ip (n, t, u))

)
.

where W denotes Wiener process and µ
(j)
ik (n, t, u) some appropriate stopping times,

see V́ı̌sek (1996a). The last term of (6) is present in the formula (6) in the case
when ψ-function is discontinuous.

Before proceeding further let us add that the influence function is in fact linearly
proportional to ψ-function which generated respective M -estimator. It means that
(5) can be rewritten as

(7)
√

n
(
β̂(ψ,n) − β0

)
=

C
(2)
n√
n

n∑
i=1

Xiψ(zi) + remainder term

(notice that parameters F and T of the influence function (seemingly) disappeared;
it is due to fact that the influence function of M -estimator does not depend of the
underlying stochastic model and T is in fact indicated by ψ). It means that in
the case when ψ-function is continuous (5) (or if you wish, (7) ) and (6) give the
same indication of the magnitude of contribution of observation zi to the value of
estimator. However, in the case when ψ-function is discontinuous (5) and (6) do not
“agree”, i. e. the change of the estimate when we delete one point from data may be
much larger than the gross-error sensitivity indicates. What is however much worse,
is the fact that we cannot control, by an upper bound of the absolute values of the
discontinuous ψ-function, the maximal value of the norm

∥∥∥n(β̂(ψ,n) − β̂(ψ,n,	)
)∥∥∥,

for more details see V́ı̌sek (1998 c). It hints that in the case when1 we decide
to employ M-estimator, it is preferable to use a continuous redescending
ψ-function. The last requirement, namely that ψ-function should be redescending,
is given by the fact that the M -estimators generated by redescending ψ-functions
are able to cope, at least partially, with leverage points.

Of course, the second point of Hampel’s program has no definition but it is nearly
evident that it means. First of all, let us recall once again that usually we have at
hand no formula for robust estimator, only an extremal problem which defines the
estimator. So to prove, that the estimator in question, is the best one among all
estimators for all distribution from some Huber model of contaminacy (of some
central classic stochastic model), is nearly impossible. So, if we define efficiency, as
it is usually done, as the ratio of (asymptotic) variances, e. i. ratio of that minimal
attainable variance and the variance of the estimator in question, it is not usually
possible to evaluate it. That is why we usually only estimate efficiency in more or
less vague way, see Huber (1981).
DEFINITION 2. The local shift sensitivity is given as

(8) sup
z,v∈R

∣∣∣∣IF (z, F, T )− IF (v, F, T )
z − v

∣∣∣∣ .
The idea which inspired the definition of local shift sensitivity is transparent (and

moreover it is hinted by its name). It of course indicates how the estimator reacts
on (a large number of) small changes of observations, so, except of others, it also

1Despite of all what was said about the difficulties with a preliminary estimate of scale for

studentization of residuals.
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describes how the estimator takes into account that we do not measure the variables
in question “precisely”. Let us realize that except of discrete variables all others are
always measured as rounded to that level of preciseness which is given by smallest
amount of given entity which our instrument can still measure.
DEFINITION 3. The rejection point is defined as

(9) inf
z∈R

{|z| : ∀(v, |v| ≥ |z|) : IF (v, F, T ) = 0} .

We have already mentioned that it is preferable, if employing M -estimators, to
use redescending ψ-function. The requirement that they are to be directly zero,
instead of (e. g.) converging (steeply) to zero, is somewhat, more or less of technical
character since it is easier to cope with such estimators from both point of views,
theoretical and evaluationary.

Breakdown point

The most prominent and probably the most misunderstood item of Hampel’s
program is the breakdown point.

Let us denote Prohorov distance by π.
DEFINITION 4. The breakdown point of an estimator Tn of the parameter θ ∈ Θ

ε∗ = sup
0≤ε≤1

{ε : ∃K(ε) ⊂ Θ,K(ε) compact :

π(F,G) < ε ⇒ G(Tn ∈ K(ε)) → 1 for n → ∞} .

The idea which led to the definition of breakdown point is easy to trace out. It
says that we try to learn how high level of contamination data could be, without
breaking a “reasonable” behaviour of the estimator. The mathematical formalization
of course seems at the first glance somewhat strange since it “reflects” reasonable
behaviour as not escaping from a (fixed) compact set. As however the definition is
given in an asymptotic form, it is correct. For finite samples it gives the ratio of
“good” and “bad” observation which does not imply explossion or implossion of the
estimator. Let us add that it is usual to give the value of breakdown point in “%”,
not as it would follow from definition as a number from the interval [0, 0.5].

As an example of estimators, even from the classic statistics, which possess the
lowest and highest possible breakdown point are mean and median. An arbitrarily
large change of the former may be caused by one observation placed sufficiently far
away from other, however the latter can be substantially shifted only by moving at
least half of observations. On the other hand, just opposite situation is what concerns
the local shift sensitivity, which is the lowest for the median and the highest for the
mean.

Enlarging Hampel’s program

As we have already mentioned the breakdown point is one of the most discussed
points and, as from these discussion follows, probably the most misunderstood char-
acteristics of robust estimators. After all, an example of misunderstanding the be-
haviour of the estimators with high breakdown point, will be given below. Hence
before discussing properties of one of the estimator of regression coefficients with
possibly high (in fact even controllable) breakdown point we are going to make
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an excursion into the history of such estimation and evaluation of corresponding
estimators.

What is really worthwhile of our attention is the fact that building the theory
of robust statistics was always accompanied by “an empirical” studies made mostly
on some simulations, see e. g. Andrews et al. (1972), Huber (1973), Lax (1975),
Schweingruber (1980), Ruppert & Carroll (1980) and some papers in Directions in
Robust .... What is however sorrowful is the fact that most of the programs which
were used for these empirical studies were not included into any commercially avail-
able statistical package, so that there is evident lack of (reliable) implementations
of efficient algorithms.

We have already discussed the mean, with zero breakdown point, and the me-
dian, with 50% breakdown point. In the regression framework a lot of estimators (of
model) were established nevertheless no with very high breakdown point. Moreover
the result of Maronna (1976) (see also Maronna et al. (1979)) brought a disappoint-
ment since it appeared that the breakdown point of M -estimators cannot exceed
1
p . On the other hand, the existence of the estimator of location having breakdown
point as high as 50% was a challenge for statisticians to find also in the regression
framework an estimator with such a high breakdown point (or to prove that it is
not possible). The challenge can be viewed at least from two standpoints. The first
one is to interpret it just as a purely mathematical challenge to reach a boundary
of possibility (realize please that 50% breakdown point is the maximal possible, in
some sense). The second standpoint is to see the problem of reaching 50% break-
down point as the problem inspired by a hope that such an estimator (even probably
losing a lot of efficiency) can hint what is the true model behind the data. And since
the idea of a true model behind the data implicitly assumed that such a true model is
independent from contamination of data (any under 50%), the high breakdown point
was believed to be something which guarantees stability of estimator with respect
to nearly any change and/or damage of data.

Of course, this hope was tacit from the very beginning because the idea of some
true, “objectively existing” model behind the data is hardly justifiable and hence
misleading at all. Nevertheless, a disappointment which arrived when it appeared
that the estimators with high breakdown point work in other way than it was wrongly
and senselessly assumed is still at the roots of prevailing part of criticism of the
estimators with high breakdown point. We shall return to this discussion later when
we will be able understand better the arguments. Now let us perform the promised
excursion into the history.

As a winner of the contest for the construction of an estimator with 50% break-
down point is usually assumed the repeated median by Siegel (1982), although already
in Hampel (1975) can be found an idea which led to the least median of squares,
(mainly) for the framework of location parameter in details studied in Rousseeuw
(1984). We shall not recall the definition of the repeated median since it (the def-
inition as well as the estimator per se) is complicated and probably it was never
implemented, maybe not even for the experimental purposes. Fortunately, a bit
later appeared the least median of squares by Peter J. Rousseeeuw. The definition
in this case is quite transparent.

DEFINITION 5. The least median of squares is given as

(10) β̂(LMS,n) = argmin
β∈Rp med

{
r2i (β)

}
.
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This is an original definition which gave, for the evident reasons, the name to the
estimator. Immediately however it was generalized on the least h-th order statistic of
squared residuals but this name is not used and the old one overlived. To be able to
introduce it, let us denote for any β ∈ Rp the i-th residual by ri(β) = Yi−

∑p
j=1 Xijβj

and the order statistics of squared residuals by r2(i)(β), it means that

r2(1)(β) ≤ r2(2)(β) ≤ ... ≤ r2(h)(β) ≤ r2(h+1)(β) ≤ ... ≤ r2(n)(β).

Now, a modified definition of β̂(LMS,n) reads as follows.
DEFINITION 6. For an h, n2 ≤ h ≤ n the least median of squares is given as

(11) β̂(LMS,n,h) = argmin
β∈Rp r2(h)(β)

2.

As it was already noted the estimator was studied in details for location parameter
in Rousseeuw (1984) and for regression framework in Rousseeuw & Leroy (1987).
This reference contains also a short passage devoted to the least trimmed squares.
They are defined as
DEFINITION 7. For an h, n2 ≤ h ≤ n the least trimmed squares are given as

(12) β̂(LTS,n,h) = argmin
β∈Rp

h∑
i=1

r2(i)(β)
2.

Both β̂(LMS,n,h) as well as β̂(LTS,n,h) have for h =
[
n
2

]
+
[
p+1
2

]
the highest attain-

able breakdown point (for the scale- and regression-equivariant) estimators, namely
ε∗ =

([
n−p
2

]
+ 1
)
/n. Later there appeared a lot of estimators of regression coeffi-

cients with high breakdown point as S − estimators, minimum distance estimators,
minimum volume estimators, minimum determinant estimators, min-max bias es-
timators, etc., to name at least a few among many others. The last ones, namely
min-max bias estimators were studied in Martin et al. (1989). Let us stop for a
while with them.

Instead of giving a definition of the min-max bias estimators, let us try to describe
them in words, since it will clarify immediately the idea which led to their proposal.
We shall keep the framework for explanation as simple as possible.

So, let us consider a probability measure on the real line, say in a form of distri-
bution function F , e. g. standard normal distribution N (0, 1). Denote by H the set
of all distribution functions on the real line. Further, for a fix δ ∈ [0, 1] denote

F(F,δ) = {G, G(x) = (1− ε) · F (x) + ε ·H(x), H ∈ H, 0 ≤ ε ≤ δ} .

Moreover, denote by B =
{
β̂ : IEF β̂ = β0

}
. Now, consider a fix estimator, say

β̂(1) ∈ B, and find the distribution function G(β̂(1)) ∈ F(F,δ) for which the bias of the
estimator β̂(1) from β0 is maximal. It means that

G(β̂(1)) = argmax
G∈F(F,δ)

∥∥∥IEGβ̂(1) − β0
∥∥∥

and put (maximal bias) MB(β̂(1)) =
∥∥∥IE

G(β̂(1)) β̂
(1) − β0

∥∥∥. Finally, put
(13) β̂(MinMaxBias) = argmin

β̂∈B
MB(β̂).

DEFINITION 8. The estimator given in (13) is called min-max bias estimator.



334 Jan Ámos Vı́̌sek

Of course, it is not simple to evaluate such estimator but in special cases it is pos-
sible. Since under some technical conditions they are equivalent with S-estimators,
we may find them as estimators which minimize scale (of residuals). It means, except
of others that we need not to specify F(F,δ), B. etc., we just only minimize scale of
residuals. The following picture shows an example of their work (notice please that
except of data depicted by crosses there is one datum at the origin, given by a small
circle).

Figure 1“Pure” data - S-estimate and normal plot of residuals.

The same or only indiscriminately different estimate of model we obtain by the
least trimmed squares, by the least median of squares, by M -estimator with Ham-
pel’s ψ-function etc.

Now, let us shift the datum given by circle (at the origin) somewhat right and
low

Figure 2 “Contaminated” data - S-estimate and normal plot of residuals.
(Notice the different scale of the right picture of Figure 1 and 2)

A large change of S-estimate quite contrasts with the other mentioned estimates,
namely the least trimmed squares, the least median of squares and M -estimate with
Hampel’s ψ-function, which remain nearly the same as they were for data given at
Figure 1. The normal plots of these estimates also remain nearly as the plot given
in the right hand side of Figure 1 while the normal plot of S-estimate (given on
the right hand side of Figure 2) is quite unsatisfactory. All these facts hint that for
the “contaminated” data a “true” model (or if you wish, reasonable model) is still
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that one given in at the left hand side of Figure 1. But it means that min-max bias
estimate is considerably biased, much more than the other estimates.

What is a reason for it ?

The reason is simple. The theory built up for min-max bias estimator in Martin
et al. (1989) assumed that the regression model is unknown but fix, let us say just
“true”, and that the distribution function belongs in F(F,δ) for some F and δ ∈ [0, 1].
In fact δ was just the only restriction which was prescribed a priori. But when
the estimator was applied on data it “took” into account several, let us stress, very
different regression models and according to the corresponding sets of residuals made
a conclusion about the underlying regression model and the distribution function of
disturbances. So Martin et al. (1989) were betrayed by the assumption (practically
always (unconsciously) accepted by most of us when applying any statistical method)
that “behind the data” is an objectively existing, unique true model and if we could
increase number of observations above all limits, we inevitably arrive at it. And
that objectively existing true models is hence included - or imprint, if you wish -
(in a strange way ?) into the world around us. The problems and traps which
such an approach implicitly contains were already known to Emmanuel Kant and in
modern philosophy of mathematical modeling they were discussed by Ilya Prigogine
and Isabella Stengers, see e. g. (1977) or (1984).

Our example demonstrates that S-estimators assumes quite different “true” model
from the “true” models assumed by other estimators (for “contaminated data”, i. e.
for data with one datum shifted). And for this model, S-estimator gave a model
which is minimally biased from “its true”. It may seem strange (at the first glance)
but as we shall see later it may be even formalized and then we conclude that for
one, fix sequence of data two (strongly) consistent estimators may give quite different
model for any size of data. Nevertheless, the conclusion from just closed discussion is
that (of course) any new proposal of an estimator is to have a heuristic background,
to be easier acceptable in applications, but the heuristics are to be well thought-out,
i. e. all pros and cons are to be taken into account to arrive at heuristics which really
work (especially for finite samples).

We have already mentioned how important is for any new (robust) estimator a re-
liable algorithm for its evaluation. Of course, it is much better, if there is an available
implementation of this algorithm. This “feature” of estimator was “underrated” in
the past due to the fact that there was usually available a formula for the estimator.
Of course, even then we may have some problems with an implementation, see e. g.
how much effort was spent to solve in a reliable way the problem of evaluating the
inverse matrix in the formula for the least squares, see Antoch & Vorĺıčková (1992).

We have also recalled that there is still a lot of misunderstandings or misbeliefs
connected with the robust methods. One very deeply rooted but completely mis-
leading was already discussed, namely erroneously assumed a large loss of efficiency.
Another one is a tacit belief that the estimators with high breakdown point are sta-
ble under any circumstances. In other words, statistical folklore still assumes that
since the estimators with high breakdown point are able to cope with a high level of
contamination of data, it would not change too much in any small change of data.

Let us give an example which will illustrate the problems discussed in last two
paragraphs and which will indicate how to cope with them. Previous to the example
let us recall once again that the robust estimators are defined typically as a solution
of an extremal problem. Since in the most cases we are not able to evaluate precise
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solution, we put up with a (tight) approximation. We shall return to this problem
in details later.

T. P. Hettmansperger & S. J. Sheather published in 1992 results of processing
data (originally studied by Mason et al. (1989)) recording dependence of number of
engine knocks on the spark timing, on the air/fuel ratio, on the intake temperature
and on the exhaust temperature. They reported that when they included the data
into memory of PC, they wrote wrongly 15.1 for the value of air/fuel ratio of the
second observation rather than the correct value 14.1. (In what follows we shall call
data with the wrong value 15.1 as damaged data and the data with the correct value
14.1 as correct data.) When they noticed the error they recalculate the results with
an expectation that the new results would differ from the previous ones slightly.
Let us add that they used β̂(LMS,n,h), i. e. the estimator with (asymptotically) 50%
breakdown point. However, to their great surprise, the change of values of the esti-
mate of regression coefficients was large, see next table. Unfortunately, they did not
write by which program (i. e. by which algorithm and by which implementation) they
evaluated results. Nevertheless the results, they gave in paper, were up to all given
decimal digits the same as the results, the program PROGRESS (see Rousseeuw &
Leroy (1987)) returns. (We are grateful to Peter Rousseeuw and Annick Leroy who
sent us a diskette with fortran source of PROGRESS, for the possibility to use it.)
The same values gives also S-PLUS (version 3.2 which was available at those days; I
am afraid that nothing changed). Both programs are based on algorithm which can
be called resampling algorithm. The algorithm randomly selects an elemental set of
p points, then it fits a regression plane to them and then performs (repeatedly) its
shift and rotation to decrease the value of the minimized order statistic. This step of
program has its justification in the geometric characterization of β̂(LMS,n,h) which
was found by Joss &Marazzi (1990). It says that at least p+1 points are at the same
distance from the regression plane, given by any solution of (11). So reaching that
requirement this step of program is stopped and the whole procedure, of selecting
another elemental set of p points, is repeated. Of course, the LMS criterion, see
(11), is monitored and at the end, given by a stopping rule (e. g. by performance
of a priori given number of repetitions), program returns as estimate that vector of
regression coefficient for which the criterion was minimal.
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Table 1

Estimates of regression coefficients for Engine Knock Data
given in Hettmansperger & Sheather (1992)

Estimates for correct data Estimates for damaged data

Intercept 30.08 -86.50
Spark 0.211 4.586
Air/Fuel 2.905 1.209
Intake 0.555 1.468
Exhaust -0.009 0.069

By a stroke of good luck, at the same time appeared an algorithm based on a dual
version of linear programming problem and corresponding form of simplex method,
later described in Boček & Lachout (1995) (let us call it BL-algorithm). Firstly,
BL-algorithm is (many times) quicker then the resampling algorithm. Secondly, we
did not yet found any set of data for which it gives larger value of the minimized
order statistics than the other methods, see V́ı̌sek (1996 b) and (2000a). We would
like to express our gratitude to Pavel Boek who is the author of the implementation
for an offer to use his software. In the next table results of both algorithms are
gathered. (The abbreviations are nearly self-explaning, nevertheless let us say that
β̂
(LMS,n,h)
R is β̂(LMS,n,h) evaluated by PROGRESS while β̂

(LMS,n,h)
BL is β̂(LMS,n,h)

yielded by Boček’s implementation; finally r2(h:n) is h-th order statistics among the
squared residuals, h = 11).

Table 2

Estimates of regression coefficients given by
resampling algorithm and BL-algorithm

Estimates Estimates

for correct data for damaged data

Estimator β̂
(LMS,n,h)
R β̂

(LMS,n,h)
BL β̂

(LMS,n,h)
R β̂

(LMS,n,h)
BL

Intercept 30.08 30.04 -86.50 48.38
Spark 0.211 0.144 4.586 -0.732
Air/Fuel 2.905 3.078 1.209 3.393
Intake 0.555 0.460 1.468 0.195
Exhaust -0.009 -0.007 0.069 -0.011

r2(h:n) 0.103 0.053 0.328 0.203

So, the conclusion is that “Hettmansperger-Sheather effect” was caused by poor
algorithm they used (and which was not yet abandon). It again underlines the
importance of availability of the reliable algorithm which is of course acceptably
quick (or not very slow, if you wish) to evaluate the estimates in a reasonable time.
The last requirement is also very important because when applying robust regression
we need to “experiment”. As we shall see later by the promised example we need to
evaluate the estimates for various sets of explanatory variables, as it is also usual in
the classic least squares analysis, but also for various h’s, i. e. for various numbers
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of observations which the least median of squares or the least trimmed squares take
into account. Let us add that for solution of the corresponding extremal problems
(which defines the robust estimators) the routine methods for finding the extrema
are not suitable due to the large number of local minima in the extremal problem
of type (11) or (12). Moreover the extrema are sometimes deep sometimes rather
flat. It means that in fact for every single robust estimator we have to find a
tailored approach which consists of two steps. Firstly, it is necessary to invent a new
algorithm (i. e. a trick) for finding an approximation to the theoretical value of the
estimator in question. Secondly, another trick has to be found for checking that the
algorithm gives really tight approximation.

But it is not yet the end of story. Even when we have verified that a new algorithm
gives good approximation to the theoretical solution of given extremal problem, we
should equip the estimator by some accompanying procedures. As we have already
briefly mentioned, it is clear that similarly as in the classic analysis performed by
the least squares we can meet with collinearity (hence we need a “ridge” version
of the estimator in question), we may get into a situation when the disturbances
are dependent with the explanatory variables (and hence we need a version of the
method of instrumental variables for given robust estimator and of Hausman test),
we can obtain AR(p) structure of residuals (and hence we need a version of Durbin-
Watson statistics for given estimator and a “remedy”, i. e. some version of Praiss-
Winston or Cochran-Orcutt transformations) etc. It is sufficient to look into a
monograph on classic regression to learn how much accompanying procedures the
(ordinary) least squares have to be able to cope with (any ?) situations in which
some assumptions are distorted (of course, the handicap of such monographs is that
they assume distortion of all assumptions except of the assumption of the (strict)
normality). Nowadays, there is not any robust estimator fully equipped by such
accompanying procedures. Moreover, it seems that there is not (even) a systematic
research in that field (unfortunately).

But it is not yet the end of story. Accomplishing all these steps, we should
“sell” new estimator to users (who are conservative and not too much eager to use
anything new, at least up to a moment when old methods evidently fail). And that
is task for the heuristics which initiated the proposal of the estimator. It is to be
so easy acceptable that it should seem to user that the estimator is as “natural”
as the least squares (converted commas of course indicates that there is nothing
natural on the least squares except of the fact that they are intrinsically connected
with Euclidian geometry which we have accepted as natural). Clearly, a few last
sentences somewhat played down the role of the heuristics. In fact, its role is, of
course, important also for the following reason. As it was already said, most of our
results are of asymptotic type. So the heuristic is inevitably also a support that the
estimator will work for the finite samples in an appropriate way, too.

It implies that we should establish a new paradigm (according to present level of
knowledge) to

• consistency,

• asymptotic normality,

• reasonably high efficiency,

• scale- and regression-equivariance,

• quite low gross-error sensitivity,
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• low local shift sensitivity,

• preferably finite rejection point,

• controllable breakdown point,

• available diagnostics, sensitivity studies and accompanying procedures,

• existence of an algorithm (better, of an implementation with accep-)
table complexity and reliability of evaluation,

• an efficient and acceptable heuristics.

The least trimmed squares - the theory

Now we are going to present somewhat more details about the least trimmed
squares β̂(LTS,n,h), then to describe an efficient algorithm for the evaluation and
employing the algorithm to illustrate and then to discuss some, at the first glance,
strange effect of (high breakdown point) estimation. Finally, we give an example
demonstrating the employment of β̂(LTS,n,h) in the applications. To be able to do
it we will need some assumptions.

First of all, denote G(z) the distribution function of e21. For some α ∈ [0, 12 ), u2α
will be the upper α-quantile of G(z), i. e. P (e21 > u2α) = 1 − G(u2α) = α. Further,
denote by [a] the integer part of a and for any n ∈ N put hn = [(1− α)n]. Finally,
for an arbitrary sequence k = {ki}∞i=1 (ki ∈ {0, 1}) such that

∑n
i=1 ki = hn put

Qn(k) = 1
n

∑n
i=1 kiXiX

T
i . The promised assumptions are as follows.

Assumptions A. The sequences {Xi}∞i=1 (Xi ∈ Rp) is a fix sequence of nonrandom
vectors from Rp. Further, the sequence {ei}∞i=1 (ei ∈ R) is a sequence of independent
identically distributed random variables. The distribution function F (z) of random
fluctuation e1 is symmetric and absolutely continuous with a bounded density f(z).
The density is positive on (−∞,∞) and has bounded derivative. Moreover,

(14)
n∑
i=1

‖Xi‖3 = O(n),

(15) IEe21 = σ2e1 ∈ (0,∞).

Uniformly with respect to k (i. e. uniformly with respect to any sequence k = {ki}∞i=1)

(16) lim
n→∞

Qn(k) = Q

where Q is a regular matrix (and convergence is of course assumed coordinatewise).
REMARK 1. The assumption (16) is somewhat stronger than the usually accepted

lim
n→∞

1
n

n∑
i=1

XiX
T
i = Q.

Since however we cannot guarantee which indeces will be selected by β̂(LTS,n,h) into
the subsample which is finally taken into account, it has to be given in this form. It
is easy to give an example of data demonstrating that without (16), β̂(LTS,n,h) need
not be consistent.
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REMARK 2. It follows from Assumptions A that we shall consider the setup
with nonrandom carriers (or explanatory variables, if you wish). The theory for the
setup with random carriers requires some modifications what concerns the assump-
tions (orthogonality and sphericality conditions), see Vı́̌sek (1999 b). However, what
concerns the results comparing those in Vı́̌sek (1999 b) and those given in this paper,
one concludes that they are nearly identical.

The absolute continuity of F seems at a first glance rather strong assumption.
However, let us realize that firstly the (ordinary) least squares are optimal (among all
estimators) only under strict normality of random fluctuations ei’s. The argument
that without normality the least squares are still optimal among all linear estima-
tors is true but misleading, since the restriction on the class of linear estimators is
drastic. Secondly, any study of order statistics assumes the absolute continuity of
the underlying distribution, since without this assumption we have got into some
technical troubles as the probability that two order statistics attain the same value
need not be zero.

Also assumption that the density is bounded and has bounded derivative every-
where may be considered somewhat strong. As we shall see in the next, we shall
need (except of other) to estimate the probability

(17) P
(
uλ ≤ ei ≤ uλ + n− 1

2 xTi t
)

(of course for the case when xTi t > 0). Then it is clear that we need some assumptions
on ‖Xi‖ and on F (z). If we assume that for some K < ∞

(18) sup
i∈N

‖Xi‖ < K,

it is evidently sufficient to assume existence of bounded derivative of density in
the neighborhood of uλ and of −uλ. However, the assumption (18) is considered
by some statisticians as inadmissibly restricting while they are willing to accept
the assumptions of type (14). Then of course, the norms ‖Xi‖, i = 1, 2, ..., n are
not uniformly bounded and hence to be able to achieve the equality P (uλ ≤ ei

≤ uλ − n− 1
2 xTi t

)
= ‖Xi‖O(n− 1

2 ), we need some assumption(s) about F (z) to be
fulfilled on the whole support of F (z). Of course, under (18) as well as under
(14), it is possible to estimate probability (17), nevertheless in the former case it
is straightforward while in the latter it requires rather involving considerations.
Moreover, Lemma A.1 shows that from the practical point of view, there is not
considerable difference between (14) and (18). Finally, results in Chatterjee, Hadi
(1988), Zvára (1989) or V́ı̌sek (1996b), (1997a, b) (2000b) indicate that in the case
when the norm of some explanatory vectors is out of control, we cannot guarantee
anything about subsample sensitivity (see also Theorem 3 below). That is why we
shall also assume an alternative version of assumption .

Assumptions B. The sequences {Xi}∞i=1 (Xi ∈ Rp) is a fix sequence of nonrandom
vectors from Rp. Moreover, (16) holds for some regular matrix Q. Further for any
n ∈ N

max
1≤i≤n, 1≤j≤p

|Xij | = O(1).

The sequence {ei}∞i=1 (ei ∈ R) is a sequence of independent identically distributed
random variables with absolutely continuous distribution function F (z). There are
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neighbourhoods of uα and of −uα in which the distribution F (z) has a bounded
density f(z) which is positive and has bounded derivative. Finally, (15) holds.

THEOREM 1. Let Assumptions A or B hold. Then β̂(LTS,n,h) is
√

n-consistent,
i. e. √

n
(
β̂(LTS,n,h) − β0

)
= Op(1) as n → ∞.

THEOREM 2. Let Assumptions A or B be fulfilled and (1−α)−uα (f(uα) + f(−uα))
�= 0. Then
√

n
(
β̂(LTS,n,h) − β0

)
= n− 1

2 Q−1
n [(1− α)− uα(f(uα) + f(−uα))]

−1×

×
n∑
i=1

(
Yi − XT

i β0
)
Xi · I

{
e2i ≤ u2α

}
+ op(1)

and β̂(LTS,n,h) is asymptotically normal with mean value equal to β0 and covariance
matrix

V (β̂(LTS,n,h), F ) = Q−1
n


(1− α)− uα(f(uα) + f(−uα))



−2 ∫ uα

−uα

z2dF (z),

i. e.

L
(√

n
(
β̂(LTS,n,h) − β0

))
→ N (0, V (β̂(LTS,n,h), F )) as n → ∞.

THEOREM 3. Let

Rn =D W (
n∑
i=1

(τ̃+i + τ̃−
i ))

where

τ̃+i = time for Wiener process W (s) to exit the interval (−ã+i , b̃+i )

with
(−ã+i , b̃+i ) = (uαxTi u[1− π̃+i ],−uαx

T
i δπ̃+i ) if xTi δ ≤ 0,

(−ã+i , b̃+i ) = (−uαx
T
i δπ̃+i , uαx

T
i δ[1− π̃+i ]) if xTi δ > 0

and
τ̃−
i = time for Wiener process W (s) to exit the interval (−ã−

i , b̃−i )
with

(−ã−
i , b̃−i ) = (uαxTi δ[1− π̃−

i ],−uαx
T
i δπ̃−

i ) if xTi δ ≤ 0,

(−ã−
i , b̃−i ) = (−uαx

T
i uπ̃−

i , uαx
T
i δ[1− π̃−

i ]) if xTi δ > 0
and where

δ = n
(
β̂(LTS,n,h) − β̂(LTS,n−1,h,	)

)
,

π̃+i = P (I
{
r2i (β̂

(LTS,n−1,	)) ≤ r2(h)(β̂
(LTS,n−1,	))

}
>

I
{
r2i (β̂

(LTS,n,h)) ≤ r2(h)(β̂
(LTS,n,h))

}
)

and

π̃−
i = P (I

{
r2i (β̂

(LTS,n−1,	)) ≤ r2(h)(β̂
(LTS,n−1,	))

}
< I
{
r2i (β̂

(LTS,n,h)) ≤ r2(h)(β̂
(LTS,n,h))

}
).
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Moreover, let [(1− α)− uα (f(uα) + f(−uα))−Rn]−1 = Op(1). Then under As-
sumptions B we have

n
(
β̂(LTS,n,h) − β̂(LTS,n−1,h,	)

)
= Q−1

n [(1− α) − uα (f(uα) + f(−uα))−Rn]−1×

(19)
×
(
Y	 − XT

	 β̂(LTS,n,h))
)

X	 + op(1) as n → ∞.

More details can be found in V́ı̌sek (2000 c) and in (1999b).
As follows from Theorem 3, n

(
β̂(LTS,n,h) − β̂(LTS,n−1,	)

)
is, except of others, pro-

portional to Rn which, as we have seen, is a random variable obtained from Wiener
process by plugging in appropriate stopping times. Such variable is bounded in
probability but we cannot control upper bound of its absolute value by an a priori
selected parameter. It implies that change of the estimates of regression coefficients
evaluated at first for the whole data and then for the data from which the -th obser-
vation was deleted may be considerably large. The asymptotic representation (19)
of n

(
β̂(LTS,n,h) − β̂(LTS,n−1,h,	)

)
is nearly the same as the asymptotic representa-

tion of the difference n
(
β̂(M,n) − β̂(M,n−1,	)

)
, i. e. the difference of M -estimators

generated by discontinuous ψ-functions, see (6) and more details in V́ı̌sek (1996a).

May be that it is not possible to grasp it immediately and only from results
which concern β̂(LTS,n,h) (which were given a few lines ago) but from the proofs it
is straightforward that the root of that behavior is in the “sharp” (or complete, if
you wish) rejection of some observations. Hence a first conjecture may be:
CONJECTURE 1. An estimator which comply with the new paradigm (except of
the equipment by the accompanying procedures) is the least weighted squares given
as

β̂(LWS,n,h) = argmin
β∈Rp

h∑
i=1

wi r2(i)(β)

(n2 ≤ h ≤ n) for appropriately selected weights wi.

REMARK 3. Notice please that again, similarly as for β̂(LTS,n,h), the order of
words is substantial, i. e. this estimator differs from the classic weighted least squares.
For the former the weights are assigned to observations implicitly by the estimator
itself while for the latter the weights are generated by an external rule.

It is well-known that applying the ordinary least squares we may get in trou-
bles when the collinearity of explanatory variables takes place. It is nowadays also
well-known that in 1970 Hoerl and Kennard proposed ridge regression as a possible
solution of the problem. The corresponding estimator is biased but it has, under
some technical condition, smaller mean squared error than the classic least squares,
see e. g. Zvára (1989). The ridge regression estimator is a special case of estimators
with linear constraints, see e. g. V́ı̌sek (1997a). The estimators with linear con-
straints are in some monographs offered as one of classic solution of collinearity, see
e. g. Judge et al. (1985) (another one is the regression on the main components).
It is not difficult to see that the solution of (12) can be found (theoretically) by a
successive application of the least squares on all h-tuples which are subsample of
data. Practically this approach is feasible only for data having not more 20 obser-
vations. Nevertheless, the algorithm which will be described below for evaluating
a (tight) approximation to the solution of (12) applies also in an iterative way the
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least trimmed squares. Hence we may get due to collinearity of explanatory vari-
ables into the same troubles as the ordinary least squares got in. That is why we
have studied also the least trimmed squares under linear constraints. The following
theorem brings the asymptotic representation of such an estimator. First of all we
have to give a definition of the estimator.
DEFINITION 9. Let C be a matrix of the type  × p and full rank. Moreover let
γ ∈ R	. For an h, n2 ≤ h ≤ n the least trimmed squares with the linear constraints
given by matrix C are given as

(20) β̂(LTS,C,n,h) = argmin
β∈Rp

{
h∑
i=1

r2(i)(β)
2 with Cβ = γ

}
.

THEOREM 4. Let Assumptions A or B be fulfilled and (1−α)−uα (f(uα) + f(−uα))
�= 0. Moreover, let C be a matrix of the type ×p and full rank. Moreover let γ ∈ R	.
Denote

Q̃−1 = Q−1 − Q−1CT
{
CQ−1CT

}−1
CTQ−1.

Then
√

n
(
β̂(LTS,C,n,h) − β0

)
= n− 1

2 Q̃−1
n [(1− α)− uα(f(uα) + f(−uα))]

−1×

×
n∑
i=1

(
Yi − XT

i β0
)
Xi · I

{
e2i ≤ u2α

}
+ op(1)

and β̂(LTS,n,h) is asymptotically normal with mean value equal to β0 and covariance
matrix

Ṽ (β̂(LTS,C,n,h), F ) = Q̃−1
n


(1− α)− uα(f(uα) + f(−uα))



−2 ∫ uα

−uα

z2dF (z),

i. e.

L
(√

n
(
β̂(LTS,C,n,h) − β0

))
→ N (0, Ṽ (β̂(LTS,C,n,h), F )) as n → ∞.

The least trimmed squares - the algorithm

Now we are going to describe algorithm which is suitable for evaluation of an
approximation to the precise solution of (12) and the way how we have confirmed
that the approximation is tight.

The algorithm is given by the following scheme:
Figure 3

C → Select randomly p+ 1 points and find
the regression plane going through them.

↓

B → Evaluate residuals for all points
with respect to this regression plane.

↓
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Select h points with smallest squared residuals
and save the sum of these squared residuals.

↓
Is the sum smaller than
the previous sum ? −−−→

no
Go to A

↓ yes

Applying LS on h selected points,
find new regression plane.

↓
Go to B

A

↓
Has been the same model

found repeatedly (20 times)
(with the smallest sum of squared residuals)

or has been an a priori given number
of repetitions already accomplished ?

yes ↓ ↓ no

End
Go
to C

Let us add that an implementation by Pavel Č́ıžek is possible to access on IN-
TERNET in XPLORE which is a statistical package organized by Wolfganag Hardle
from (and on) Humboldt University. By a request a version applicable under DOS
is available from present author and soon a WINDOWS-application will be available
(also from present author).

Due to the fact that a lot of attention was paid to the study of methods of
evaluation of the least squares, the steps in the previous algorithm which employ
the least squares do not represent any problem. Nevertheless it does not guarantee
that the algorithm is reliable. The next lines bring an information which approves
that the algorithm does give a tight approximation to the precise solution of the
extremal problem (12).

We have already mentioned that Hettmansperger & Sheather analyzed in 1992
data (let us call them the Engine Knock Data) which contained only 16 observations
(we have already described what the data recorded). For such data we may find pre-
cise solution of the extremal problem (12) by means of a complete inspection over all
subsamples of size 11 =

[
n
2

]
+
[
p+1
2

]
Since there is “only” 4368 subsamples of size 11,

we obtain a solution of the problem in a few minutes. We have also mentioned that
not too long after the time when Hettmansperger’s & Sheather’s results appeared
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we had at hand Boček-Lachout’s algorithm and we evaluated estimates (after all we
have presented them already in previous). Let us give them once again, now in one
table with precise results for β̂(LTS,n,h).

Example 1. Engine Knock Data, h = 11 (β̂(LTS,n,h) - precise values.)

Table 3

Correct data

Method Interc. SPARK AIR INTK EXHS.
∑h
i=1 r2(i)(β) r2(h)(β)

β̂(LMS,n,h) 30.04 0.144 3.078 0.460 -0.007 0.423 0.053
β̂(LTS,n,h) 35.11 -0.028 2.949 0.477 -0.009 0.271 0.096

Table 4

Damaged data

Method Interc. SPARK AIR INTK EXHS.
∑h
i=1 r2(i)(β) r2(h)(β)

β̂(LMS,n,h) 48.4 -.732 3.39 .195 -0.011 1.432 0.203
β̂(LTS,n,h) -88.7 4.72 1.06 1.57 0.068 0.728 0.291

Let us turn our attention to the last two columns (successively in both tables,
i. e. for correct as well as for damaged data). The last but one gives the sums of
eleven smallest squared residuals in respective models. We see that smaller are the
sums which stay in tables for the least trimmed squares than the sums of the eleven
smallest squared residuals which belong to the least median of squares. But it is
O. K., since the method of the least trimmed squares is an “expert” for finding such
models in which corresponding sums of the h smallest squared residuals are minimal.
(Moreover in this case we have at hand precise solution of (12), so the sum is really
the smallest possible. After all, we see that the sum which corresponds to the least
median of squares is nearly two times larger.) So, since we found by the throughout
inspection “really good” model, we can expect that all residuals (up to the eleventh
one) are also small. Nevertheless, comparing items in the last column we notice
that Boček-Lachout’s algorithm gave even smaller eleventh order statistics among
the squared residuals. It hints that the Boček-Lachout’s algorithm is really efficient.

In the case when the number of observations is however larger than, say 20, we
are not able to perform inspection of all subsamples of size h and we have to employ
the algorithm, we have just described. It is the case of the next example.

Example 2. Salinity Data (Ruppert, Carroll 1980), 21 cases, h = 16.
Concentration of salt in water in North Carolina’s Pamlico Sound probably depends
on

• on salinity lagged by two weeks,
• on number of biweekly periods elapsed since ......,
• on the volume of river discharge into the sound.

Table 5

Method Interc. SAL.LAG TREND DISCHR.
∑h
i=1 r2(i)(β) r2(h)(β)

β̂(LMS,n,h) 37.4 .362 -.086 -1.33 .874 .315
β̂(LTS,n,h) 36.7 .389 -.114 -1.31 .698 .379

The items given in table show that the situation is analogous to that one described
in previous. Again the sum of the sixteen smallest squared residuals is smaller for
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β̂(LTS,n,h) than for β̂(LMS,n,h) while the sixteenth order statistics of squared residuals
is smaller for β̂(LMS,n,h) than that one for β̂(LTS,n,h).

The next example only confirm that the algorithms behave in the same way as in
previous also for somewhat larger number of observations.

Example 3. Educational Data (Rousseeuw, Leroy 1987), 50 cases, h = 27.
Expenditure on public education (per capita) in 50 U. S. states depends on

• on number of residents per thousand residing in urban areas in 1970,
• on personal income (per capita) in 1973,
• on number of residents per thousand under 18 years of age in 1974.

Table 6

Method Interc. RESID. INCM. YOUNG
∑h
i=1 r2(i)(β) r2(h)(β)

β̂(LMS,n,h) -272.4 .090 .034 .962 3734.8 16.78
β̂(LTS,n,h) -143.5 .043 .035 .639 3414.5 19.04

Some other results of processing “famous” data sets may be found in V́ı̌sek
(1996 b) and (2000a).

Let us return to Hettmansperger and Sheather’s study once again. We have said
that they expected, after correcting the error in data, that recalculated results would
be only somewhat different from the initial ones but they where surprised by the
magnitude of their change. We have also showed that the change of their results
was only miseffect caused by the bad algorithm they employed for evaluation of
the approximation to the solution of (11). Nevertheless, why they were surprised ?
Why they expected that the change of results would be small ? It was due to the
(well-spread) idea that the estimators with high breakdown point, due to the fact
that they are able to cope with a high contamination, are to be stable under any
change of data.

We are going to demonstrate that this idea is wrong. We are going to show that
it depends on the (character of the) change of data whether the change of estimates
will be small or large, even in a rather small change of data. We shall use once again
Engine Knock Data.

Example 4. Engine Knock Data, h = 11.
(Please remember that in this case estimates evaluated by β̂(LTS,n,h) are precise values

of estimates, no approximation.)

Table 7

Data Interc. SPARK AIR INTK EXHS.

Correct data (with 14.1) 35.11 -0.028 2.949 .477 -.009

Damaged data (with 15.1) -88.7 4.72 1.06 1.57 .068

So, we see that a small change, even of one datum, may cause a large change of
estimate.
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To enlighten what is behind this behavior let us give an academic example. As
any other academic example also this is unrealistic, quite senseless, etc. but has one
advantage, it is immediately clear what was the reason for the behavior of β̂(LTS,n,h)

described by previous table.
“Decreasing true” model “Increasing true” model

The pictures hint that a small change, even of one datum, may cause a large
change of (our ideas about) the “underlying” model.

Returning to the table for damaged data of Example 1 we notice that the least
trimmed squares and the least median of squares offered quite different estimates of
underlying model. Let us recall that we gave arguments why we may expect that
for the extremal problem (11) we have at hand a tight approximation of its precise
solution. For the least trimmed squares we have at hand even the precise value of
the estimator. Keeping that in mind we may be surprised that the estimators gave
so different estimates of coefficients.

An academic example (again in the form of a picture) may enlighten the situa-
tion so that it is immediately clear what is the reason for a “strange” behavior of
estimators.

β̂(LMS,n,h) versus β̂(LTS,n,h)
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The fact that two consistent estimators may give rather different (even orthog-
onal) estimates of underlying model was already studied, formalized and in known
as the diversity of estimates. Since the formalization is in easy available sources,
see V́ı̌sek (1996 b), (1997 c) or (2000a), we shall not repeat it. Let us only add that
the formalization demonstrates that two consistent estimators may give completely
different estimates of regression coefficients and an increase of sample size need not
help. In fact, the phenomenon may appear both for strong as well as for weak
consistency and for any size of data.

Now let us turn to the promised example about the Czech economy.

Example of analysis by high breakdown point estimator

In the study of data describing the Czech economy in 1994 we have looked for
factors having a significant influence on the export and on the foreigner direct in-
vestment, only. We shall present below results for foreigner direct investment. The
reason is that the paper is already rather long and moreover in both cases, as we
shall after all mention it in the next text, the conclusion were very similar. At the
beginning of study we have took into account the whole set of raw data recording
the export (X)2, the import, the total sail (S), the labour (L), the quality of labour
given by number of the university educated workers and other labour, the total pro-
duction, total profit, the value added (VA), the wages (W), total expenditures on
labour (cost of labour), the capital (K), percentage of production sailed by 3 largest
producers (and so representing concentration in given industry), the development of
prices (DP) (given by weighted mean of inflation in given industry), Ballasa index
(difference of export and import divided by sum of export and import), the debts,
an increasing return to scale (IRS), negative externalities (waste, chemicals, etc.),
the total factor productivity (TFPW) (related to the level of wages) in the Czech
republic and Germany, the foreigner direct investments (FDI), the research and de-
velopment (R&D), sensitive products (there are industries which, due to a better
organized lobby, such as in textile, clothing, agricultural products, steel, automo-
biles and some chemicals, are subject to a higher protection tariffs), energy intensity
(including, coal, gas, oil and electricity), depreciations, kilogram prices, etc. were
collected for 92 industries. Finally, we have tried to use also some explanatory vari-
ables which were derived from these (which were just given) as unit labour cost,
capital per labour, profit per value added, etc.

It is not necessary to be expert on the Czech economy to be aware that such
industries as Tobacco (due to Philip-Morris) and Energy production (due to ČEZ)
are completely atypical. Since both have a special status one can justifiably conclude
that they may damage the study and try to exclude them at first. It appeared that it
is sufficient to exclude Tobacco since the foreigner direct investment was completely
atypical, namely zero at respective year.

Moreover, it is clear that the industries have different sizes and that is why we
need some standardization of them. It need not be clear at the first glance that there
was no suitable unique variable for standardization of all variables. E. g. value added
may seem to be appropriate for such role but empirical results demonstrated that
it is not the case. So at the end we have standardized different factors (explanatory
variables) as well as the response variable by different variable (see model given

2Abbreviations are given only for those variables which are used in below given reported results

of regression analysis.
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below). Maybe that in stabilized market economy with prices representing at least
vaguely real information about situation on the market, value added may serve well
for this purpose.

Of course, we have started with the least squares and due to not very large number
of observations (91) and a limited number of explanatory variables (about 30) we
could experiment with a lot of combination of them. We were not satisfied by the
results. Even the coefficients of determination were not very large leaving aside that
other characteristics (as e. g. normality of residuals) were also rather poor.

That was the reason we have applied the least trimmed squares (why just the least
trimmed squares is clear from the previous). In this case we were somewhat limited
in experimenting by time since the algorithm described in previous is of course a
bit slower than that one for evaluating the least squares. Nevertheless we have tried
more than twenty combinations of explanatory variables for several transformation of
response variable. Moreover, we had to try to fit the model for various value of h. For
each combination we started with h equal to 45 and increased it. At we end we have
arrived to the conclusion that the model given below is the best one. The reason was
not only the good statistical characteristics but also the fact that after fluctuations
of estimates of coefficients for several starting values of h we arrived to an interval
of values, approximately from 48 to 56, for which the corresponding subsamples of
data, i. e. corresponding collections of industries were nested and fluctuations of
the estimates of coefficients of regression models were small (in the next text we
call these subpopulations as main while the complementary ones are denoted as
complementary). Also the increase of the estimate of variance of disturbances was
acceptable. Outside this interval of values of h we met with (much) more “wild”
behaviour of all items in question.

log
(

FDIi
Wi

)
= β0+β1·

Xi
Wi

+β2·
V Ai
Wi

(21) +β3 ·
R&Di
V Ai

+ β4 · IRSi + β5 ·DPi + ei for i = 1, 2, ...,h,

The next table is a pattern of results we have collected. (In all tables which follow
Estimates and Standard mean Estimates of regression coefficients and Estimates of
standard errors of estimates of regression coefficients, respectively.)

Table 8

Estimates of coefficients for main subpopulation for model (21)

91 cases h = 48

Item Estimates Standard t-value P-value
Intercept -11.4878 0.4606 -24.9422 0
X/W 0.1785 0.0445 4.016 0.00024
VA/W 0.6082 0.0567 10.7189 0
R&D/PH 0.001 0.0003 3.4167 0.001419
IRS 4.5787 0.2182 20.9841 0
DP 0.304 0.0831 3.6601 0.000699
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Having gathered tables of results for h = 45, 46, ..., 62 we collected estimates of
coefficients and of other characteristics of models in the next two tables (of course,
for h = 48, 49, ..., 55 - see arguments given in previous).

Table 9

The estimates of coefficients for all models for h = 48, 49, ..., 55.

Number
of cases 48 49 50 51 52 53 54 55

Intercpt -11.49 -11.02 -11.40 -11.41 -11.16 -11.15 -11.13 -10.88
signif. (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

X/W 0.1785 0.1592 0.19 0.204 0.2057 0.2142 0.2256 0.2194
signif. (0.0002) (0.0014) (0.0003) (0.0002) (0.0002) (0.0002) (0.0001) (0.0003)

PH/W 0.6082 0.5661 0.5571 0.5517 0.5412 0.5504 0.5577 0.5661
signif. (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

RD/PH 0.001 0.0009 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003
signif. (0.0014) (0.0027) (0.0131) (0.0192) (0.0136) (0.0233) (0.0312) (0.0297)

IRS 4.5787 4.4467 4.5885 4.6169 4.5003 4.4717 4.4377 4.3186
signif. (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

DP 0.304 0.2953 0.3553 0.3394 0.3454 0.3259 0.3114 0.3066
signif. (0.0007) (0.0015) (0.0003) (0.0006) (0.0007) (0.0018) (0.0035) (0.0056)

Table 10

Values of sum of squares (SS), estimates of variance, coefficients of determination,
Durbin-Watson (DW) and χ2-statistics

Number
of cases 48 49 50 51 52 53 54 55
SS 14.01 15.76 17.29 18.94 20.60 22.62 24.59 27.44
σ̂2 0.334 0.367 0.393 0.421 0.448 0.481 0.512 0.560
R2 0.941 0.936 0.942 0.937 0.933 0.926 0.920 0.911
DW 1.947 1.809 1.843 1.820 1.763 1.611 1.548 1.641
χ2 10 8.84(8) 6.42(7) 9.01(9) 7.12(9) 5.48(9) 8.33(8) 6.97 (8) 6.31 (8)

Now let us turn to complementary subpopulations. In the same way as described
in previous we have found also for complementary subpopulations regression models.
We concluded that the model

log
(

FDIi
Wi

)
= β0 + β1 ·

V Ai
Wi

+ β2 ·
R&Di
V Ai

+ β3 · IRSi + β4 · DPi + ei

10The degrees of freedom (7, 8 and 9) were given as the results of the application of the χ2 test
procedure which automatically divided residuals into cells so that to have at every cell at least 5

in.
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(22) for i = 1, 2, ...,n− h− ,

is the best fitting to the complementary subpopulations.
Table 11

Estimates of coefficients for complementary subpopulation for model (22)

41 cases h = 37

Item Estimates Standard t-value P-value
Inter 3.099 1.6823 1.8422 0.07473
VA/W 1.5768 0.5000 3.1539 0.003493
RD/VA 0.0034 0.0007 5.0475 0.000017
IRS -2.9364 0.5448 -5.3896 0.000006

TFPW -3.3955 1.5883 -2.1378 0.040269
Table 12

Other characteristics of models, estimates of coefficients of which are given in
Table 11

Number of cases / size of subsample, i. e. h 38/36 41/37
Sum of squares 74.2522 63.2336
Estimate of scale 2.3952 1.976
Coefficient of determination 0.5988 0.6263
Durbin - Watson 1.9453 1.8932
χ2 6.69(4) 9.28(5)

There is of course (legitimate and interesting) question:
Is such division on the main and the complementary subpopulations jus-
tifiable ?
The answer is Yes.

At the late forties P.H. Douglas studied the question whether there is a model for
the production based on the labor and capital, and on the base of some empirical
material proposed the function which is nowadays commonly known as Cobb-Douglas
production function, see Douglas (1948) or Kmenta(1986). For further details see
e. g. Arrow et al. (1961), Greene (1993) or Judge et al. (1985)). It may be written
as

Qi = µLλiK
1−λ
i

where Qi is the output in the i-th industry (and L and K are labor and capital,
respectively, as already denoted in previous). Moreover, the results given in tables
in previous text hint that there is a positive influence of the characteristic which
is called increasing return to scale in the main subpopulation and negative in the
complementary, we may try at the first analysis to fit this function to the subpop-
ulation given by our division. Assuming e. g. that λ = 1 and taking into account
(again) that industries are of different magnitudes (and hence we have to standard-
ize corresponding items), we may try to estimate the coefficients of the regression
model

(23)
Ki
Wi

= α1 + α2 ·
Si
Li

+ νi

where of course νi are some disturbances. Prior to reporting the results of such
experiment, let us say that we were successful for the main subpopulations but the
model was unsuitable for the complementary ones. Again, after some experimen-
tation we arrived to the conclusion that for the complementary subpopulations the
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best fit is evidently achieved by the model

(24)
Ki
Wi

= γ1 + γ2 ·
Li
Si

+ κi.

The corresponding coefficients of determination are given in Tables 13 and 14 below.

Table 13

Coefficients of determination for main subpopulations

Cases 48 49 50 51 52 53 54 55
Model (23) 0.7436 0.7442 0.7399 0.7408 0.7432 0.7446 0.7456 0.7467
Model (24) 0.1676 0.1694 0.1807 0.1816 0.1681 0.1375 0.1307 0.1319

Table 14

Coefficients of determination for complementary subpopulations
Cases 43 42 41 40 39 38 37 36

Model (24) 0.0084 0.0343 0.1047 0.1092 0.1105 0.1162 0.1221 0.1288
Model (23) 0.5444 0.5588 0.5572 0.5492 0.5576 0.5421 0.5443 0.5353

The results may be, with a grain of salt, interpreted so that the main subpopulations
behave like in the market economy while the others as in a centrally planned economy
(we stress once again that it is somewhat exaggerated). Moreover, the results given
in tables in previous text hint that there is a positive influence of the characteristic
which is called increasing return to scale in the main subpopulation and negative in
the complementary. It supports the same conclusion.

Conclusions

The conclusions are quite clear. Earlier, when the classic statistics studied the
estimators as the maximum likelihood or the minimum χ2, the evaluation of them
seemed to be not very difficult task. The evaluation of the modern (robust) estima-
tors is much more involving and a naive algorithm may betray us. So, the evaluation
of them is to be taken as seriously as the proving plausible the theoretical features.
Similarly, equipping the estimator by the accompanying tools, i. e. by test for the
verification of the assumptions is unseparable part of establishing new estimator.
Also searching for the consequences of under- or overfitting the model, presence of
an influential point and/or collinearity etc. should be included into that process.

The least trimmed squares fulfill nearly all items of a modern paradigm of point
estimation (the research on the least weighted squares which should rid us some
problems with the least trimmed squares, is under process). Moreover, the heuristics
of the least trimmed squares are so easy acceptable, that they may be apply even by
the believers into a traditional paradigm of mathematical modeling. Finally, and it is
also significant, the interpretation of results is not very far from the interpretation of
the ordinary least squares. The advantage of the estimator is that nowadays several
implementations are available
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1. Appendix

LEMMA A.1. Let us have
∑n
i=1 ‖xi‖ = O(n). Then for any ∆ ∈ (0, 1] there is a

K∆ < ∞ such that denoting for any n ∈ N

mn = # {i : 1 ≤ i ≤ n, ‖xi‖ > K∆}
we have mn < ∆ · n (where “#A” denotes the number of elements of the set A).
Proof. Due to the assumptions of lemma there is C such that for all n ∈ N we
have 1

n

∑n
i=1 ‖xi‖ < C. Fix ∆ ∈ (0, 1] and put K∆ = C

∆ + 1. Then

C >
1
n

n∑
i=1

‖xi‖ =
1
n




∑
{i:‖xi‖≤K∆}

‖xi‖+
∑

{i:‖xi‖>K∆}
‖xi‖


 >

1
n
mnK∆

and hence mn < n · C
K∆

< n ·∆.

Table A1

Data which were discussed in Figure 2
Datum given as a small circle is in the first column of the lower table.

x 0.2 0.39 0.6 0.87 1.2 1.94
y -0.9 -0.459 -1.17 1.485 1.394 1.545

x 0.2 -0.2 -0.39 -0.6 -0.87 -1.2 -1.94
y -0.3844 0.9 0.459 1.17 -1.485 -1.394 -1.545

Table A2

A pattern of data which were used in numerical illustration, i. e.
data about the Czech economy

case OKEC X/S VS/PH SZ/PH K/PH R&D/PH PH/W W)

1 101 0.49 2.85 3.79 5.21 51.2 2.16
2 102+103 0.13 1.36 2.59 3.98 51.2 3.67
3 111+112 0.18 1.51 2.87 3.98 1522 3.23
4 120+132 0.05 19.04 25.29 44.03 4417 0.37
5 141+142 0.22 1.32 3.16 5.04 472.9 3.4
6 143-145 0.31 2.46 4.68 4.88 472.9 2.32
7 151 0.02 3.44 5.66 4.1 10.1 2.2
8 152 0.04 0 5.01 2.26 10.1 2.91
. . . . . . . .
. . . . . . . .
83 352 0.39 2.81 4.32 4.2 312.4 2.49
84 353 0.03 6.46 2.42 2.54 2945.3 3.87
85 354 0.56 5.59 8.37 5.31 312.4 1.71
86 361 0.36 2.87 6.71 2.97 4.2 2.09
87 362 0.24 0.8 3.04 1.77 203.3 3.94
88 363-223 0.73 1.54 3.6 2.11 203.3 3.33
89 364-365 0.47 5.85 7.7 2.9 203.3 1.99
90 296-366 0.54 2.82 5.12 2.48 38.7 2.53
91 401 0.02 0.84 0.76 13.3 2.3 10.67
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Table A2 (continued)

case OKEC CR3 TFPW BAL DP Ln(FDI/W)

1 101 0.99 1.05 0.69 1.56 -4.6
2 102+103 0.94 1.64 1 1.86 -3.58
3 111+112 0.94 1.5 -0.98 1.66 -5.52
4 120+132 1 0.16 -0.74 1.97 -6.62
5 141+142 0.22 1.45 0.32 2.35 0.43
6 143-145 0.94 1.12 -0.14 1.8 -0.46
7 151 0.15 1.14 -0.08 1.38 -4.46
8 152 0.81 1.66 -0.42 1.97 -3.85
9 153 0.31 1.13 -0.46 1.39 -3.19
. . . . . . .
. . . . . . .
. . . . . . .
82 351 1 0.7 0.76 1.02 -3.21
83 352 0.59 1.23 0.86 4.12 -3.19
84 353 0.8 1.95 0.65 3.05 -0.72
85 354 0.6 0.88 0.09 3.24 0.28
86 361 0.27 1.21 0.29 2.02 -0.55
87 362 0.72 2.2 0.47 2.03 -1.84
88 363-223 0.39 1.86 -0.11 2.11 -3.42
89 364-365 0.31 1.18 -0.35 2.27 -0.1
90 296-366 0.31 1.46 0.45 2.15 -2.8
91 401 0.77 2.41 0.35 3.01 0.82
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[46] V́ı̌sek J. Á. (1998 c): What is characterized by gross error sensitivity ? Bulletin of the Czech
Econometric Society, Volume 5 (1998), Issue 7, 111 - 124.
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