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ON SOME EXACT DENSITIES IN AN EXPONENTIAL FAMILY

Milan Stehlík

Abstract. The aim of this paper is to give some results on the exact density of the
I-divergence in the exponential family with exponentially distributed observations.
It is shown in particular that the I-divergence can be decomposed as a sum of two
independent variables with known distributions. Since the considered I-divergence
is related to the likelihood ratio statistics, we present the method of computing the
exact distribution of the likelihood ratio test. One numerical example is provided to
illustrate the methods discussed.
Rez�me: Uva�aets� problema na�ti raspredelenie I-divergencii dl�

exponencia	nogo seme�stva.

1 Introduction. Let’s consider a statistical model with N independent obser-
vations y1, ..., yN which are distributed according to the exponential densities

f(yi|ϑ) =
{

γi(ϑ) exp{−γi(ϑ)yi}, for yi > 0,

0, for yi ≤ 0.
(1)

Here ϑ := (ϑ1, ..., ϑp) is the vector of unknown scale parameters, which are the
parameters of interest. The parameter space Θ is an open subset of Rp, γi ∈ C2(Θ)
and the matrix of first order derivatives of the mapping γ := (γ1, ..., γN ) has full
rank on Θ.

This model is motivated e.g. by a situation when we observe the time intervals
between (N + 1) succesive random events in a Poisson process, which is commonly
used in queueing systems (c.f. Kaufmann and Cruon, [5] and Kleinrock [6]), then
the parameters γi(ϑ) are equal to the (usually parametrized) intensity γ.

Another example is the software-reliability model of Moranda developed further
by Gaudoin and Soler [4]. Here the objective is to assess the failure rate based on
the observation of the successive failure times,

0 < t1 < t2 < · · · < tn < . . . ,
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which are observations of a random point-process.

Gaudoin and Soler(1992) suppose, that

γi(ϑ1, ϑ2) = ϑ1λi(ϑ2); i = 1, ..., N

with ϑ1 ∈ R+, ϑ2 ∈ R. The parameter ϑ1 is a parameter of scale and the param-
eter ϑ2 represents the change of the reliability of the software, resulting from the
correction after its i-th failure. In particular, when

λi(ϑ2) = exp{−(i− 1)ϑ2}

(cf. Gaudoin and Soler (1992)), then ϑ2 = 0 if the reliability is stable and ϑ2 > 0 if
there is a growth of reliability. Here is proposed a rather complicated expression for
the distribution function of the maximum likelihood estimator (MLE). In Pázman
[8] the probability density of the parameter estimators is considered.

The other one interesting problem is a test on proportion of the exponential
distribution which can be used for constructing a statistical quality control sampling
plan (c.f. Rublík, [9]).

The last but not least example is GLM with exponential distribution (c.f. Mc-
Cullagh and Nelder, [3]).

Such set-ups motivate interesting statistical problems. In the present paper we
put stress on the testing problem and consider the likelihood ratio (LR) test. We
derive exact distribution function and the density of the LR test of the canonical
parameter. The table of critical constants is also given and we compare the exact
distribution of the LR with the asymptotic one.

2 The I-divergence. In this section we consider some structural properties
of the model to be used later. Model (1) is a regular exponential family which is a
subfamily of the family

{h(y|γ) =
N∏

i=1

γie
−γiyi}γ∈Γ . (2)

To relate this to the general theory of exponential families we can write densities (2)
in the form

{exp(−ψ(y) + t(y)T γ − κ(γ))}γ∈Γ (3)

where
ψ(y) = 0

ti(y) = −yi; i = 1, ..., N

κ(γ) = −
N∑

i=1

ln(γi)

Γ = {(γ1, ..., γN ), γi > 0, i = 1, ..., N}.

The family (1) can be considered as a particular case of a nonlinear family with
densities

{exp(−ψ(y) + tT (y)γ(ϑ)− κ(γ(ϑ)))}ϑ∈Θ



which is ”covered” by the family (3) in the sence that it is a subfamily of the family
(3), and

{t(y) : y ∈ Y } ⊆ {Eγ{t(y)} : γ ∈ Γ} (c.f. Pázman, [7], chpt.9). (4)

Since in regular exponential families we have the relation (c.f. Barndorf-Nielsen, [1])

Eγ{t(y)} =
∂κ(γ)
∂γ

,

by the ”covering” property (4) we can associate to each value of t(y) a value of γ,
denoted γ̂y, which satisfies

∂κ(γ)
∂γ

|γ=γ̂y = t(y). (5)

From (5) it follows that γ̂y is the MLE of the canonical parameter γ in the covering
family.

The Kullback-Leibler divergence

I(γ�, γ) = Eγ�

{h(y|γ�)
h(y|γ)

}
; γ, γ� ∈ Γ

in the model (2) is equal to

I(γ�, γ) = −N +
N∑

i=1

{ γi

γ�
i

− ln( γi

γ�
i

)
}
.

By the use of (5) we can define the I-divergence of the observed vector y

IN (y, γ) := I(γ̂y, γ) = −N +
N∑

i=1

{yiγi − ln(yiγi)}.

For v > 0 let us introduce a function

Gv(x) =

{
x− v ln(x), for x > 0,

0, for x ≤ 0.

Further G := G1 is used. This allows to write

IN (y, γ) =
N∑

i=1

{G(γiyi)−G(1)}. (6)

3 The geometric approach to the I-divergence.

In this Section we give our main results, Theorems 3.2.1. and 3.2.2. .

Let us introduce notation y ∼ exp(γ1, ..., γN ), γ ∈ Γ when y = (y1, ..., yN) is
distributed according to the density h(y|γ) (see (2)).

3.1 The case of one observation.



Let’s have y ∼ exp(γ̄). Then the I-divergence I1 has the form I1(y, γ) = −1 +
G(γy) (see (6)). The function G : (0,+∞)→< 1,+∞) has as an inverse multifunc-
tion G−1 :< 1,+∞)→ 2R with two differrentiable selectors minG−1 and maxG−1.
In the Appendix A is given that

minG−1(u) = −LW(0,−e−u), u > 1

and
maxG−1(u) = −LW(−1,−e−u), u > 1

where LW(k,w), k ∈ Z, w ∈ C is the value of the k−th branch of the Lambert-W
function at the point w (see Appendix A).

Let F (x) is the cummulative distribution function (c.d.f.) of I1(y, γ). Then
F (x) = 0 for x ≤ 0. For x > 0 we have

F (x) = P{G(γy) < 1 + x} = P{minG−1(1 + x) < γy < maxG−1(1 + x)} =

= P{− γ̄

γ
LW(0,−e−1−x) < γ̄y < − γ̄

γ
LW(−1,−e−1−x)} =

= e
γ̄
γ LW(0,−e−1−x) − e

γ̄
γ LW(−1,−e−1−x).

To obtain the density f(x) =
dF (x)
dx

we follow the rules for derivatives explained in

Appendix A. Thus we have proved the following proposition.

Propostion.

Let y ∼ exp(γ̄). Then the c.d.f. of I1(y, γ) has the form

F (x) =

{
e

γ̄
γ LW(0,−e−1−x) − e

γ̄
γ LW(−1,−e−1−x), for x > 0,

0, for x ≤ 0,

and the density of I1(y, γ) has the form

f(x) =

{
q(1, x, γ̄

γ )− q(0, x, γ̄
γ ), for x > 0,

0, for x ≤ 0.

Here

q(k, r, s) =
sLW(−k,−e−1−r)
1 + LW(−k,−e−1−r)

esLW(−k,−e−1−r) for k ∈ Z; r, s > 0.

3.2 The case of N observations.

Let us consider the (N − 1)-dimensional Euclidean simplex

σN−1 = {u ∈ R
N−1 : 0 < u1 < 1, ..., 0 < uN−1 < 1− u1 − ...− uN−2}

and the positive cone EN = {x ∈ R
N , x1 > 0, ..., xN > 0} of the N -dimensional

Euclidean space EN . It holds EN = σN−1 × E1. For γ̄ ∈ Γ we define the map
νγ̄ : E1 × σN−1 → EN



yi =




r

γ̄i
ui, for 1 ≤ i ≤ N − 1,

r

γ̄N
(1− u1 − u2 − ...− uN−1), for i = N .

(7)

This map is regular and dy =
rN−1

γ̄1...γ̄N
drdu.

Theorem 3.2.1.

Let’s have y ∼ exp(γ̄1, ..., γ̄N ) and δ > 0.
Then IN (y, δγ̄) is the sum of two independent variables RN and SN where

RN = GN (δr)−GN (N) (8)

and
SN = − ln{NNu1...uN−1(1− u1 − ...− uN−1)}. (9)

Here r is Γ (N, 1)-distributed and (u1, ..., uN−1) is uniformly distributed on the sim-
plex σN−1.

Proof.
Into the characteristic function ψ of the variable IN (y, δγ̄) we introduce the co-

ordinates (r, u1, ..., uN−1) corresponding to the map νγ̄ (see (7)).

After the substitution we obtain ψ(µ) = ψ1(µ)ψ2(µ) where

ψ1(µ) =
∫ +∞

0
exp{i µ{GN (δr)−GN (N)}}

rN−1

Γ (N)
e−rdr

and

ψ2(µ) =
∫

σN−1

exp{−iµ ln{NNu1...uN−1(1− u1 − ..− uN−1)}}du

are the characteristic functions of the random variables RN and SN from the The-
orem 3.2.1. . This completes the proof.

�

Theorem 3.2.2.

The c.d.f. of the variable RN from the Theorem 3.2.1. has the form

FN (ρ) =

{
FN (−Nδ−1 LW(−1,−e−

ρ+N
N ))−FN (−Nδ−1 LW(−e−

ρ+N
N )), ρ > 0,

0, ρ ≤ 0

and the density of the RN has the form

fN (ρ) =

{
h(N, 1, ρ, δ−1)− h(N, 0, ρ, δ−1), for ρ > 0,

0, for ρ ≤ 0.



Here FN (x) is the c.d.f. of the Γ (N, 1)-distribution and for N ∈ N, k ∈ Z; r, s >
0 we define

h(N, k, r, s) =
(−N)N−1sN

Γ (N)
{LW(−k,−e−

r+N
N )}N

1 + LW(−k,−e−
r+N

N )
eNsLW(−k,e− r+N

N ).

Proof. For ρ ≤ 0 we obtain FN (ρ) = 0. Let us have ρ > 0. Then

FN (ρ) = P{−Nδ−1LW(−e−
ρ+N

N ) < r < −Nδ−1LW(−1,−e−
ρ+N

N )} =

= FN(−Nδ−1LW(−1,−e−
ρ+N

N ))−FN(−Nδ−1LW(−e−
ρ+N

N )).

The density of the RN follows after the differentiation of FN (ρ) (see Appendix
A).

�

3.3 The comparison to the normal model.

The components RN and SN (see Theorem 3.2.1.) are independent variables (it
means that our decomposition is also deconvolution), RN is the ”radial” component
depending only on the ”radial” coordinate r and SN is the simplectic component
depending only on the simplectic coordinates (u1, ..., uN−1).

There is an analogy between the radial component of the I-divergence in the
normal linear regression and in the model (1). To see this we note that in the
normal regression with y ∼ NN (ϑ, σ2I) we have

IN (t(y), ϑ) =
1
2σ2

||y − ϑ||2

where ϑ ∈ Θ is the unknown parameter of the interest and σ is a known variance
parameter. Here we must use the spherical coordinates (r(ϑ), ϕ1, ..., ϕN−1) of EN −
η(ϑ) and the decomposition contains only the radial component

IN (t(y), ϑ) = R∗
N (r, ϑ) =

1
2σ2

r(ϑ)2.

The LR test of the hypothesis H0 : ϑ = ϑ0 versus H1 : ϑ �= ϑ0 based on the
statistics −2 lnλ = 2R∗

N(r, ϑ0) has χ
2
N -distribution under the null hypothesis.

To make the comparison to the exponential model let us consider the LR test of
the hypothesis H0 : γ = γ0 versus H1 : γ �= γ0 in the simple GLM y ∼ exp(γ, ..., γ)
(Poisson process, see Section 4). The LR statistics −2 lnλ = 2RN(r, γ0) is asymp-
totically χ21-distributed under the null hypothesis (see Wilks, [10]).

4 Illustrative example.

In this Section we show some applications of our results to the LR test of the
parameter of interest in the model (1).



We consider a statistical model with N independent observations y1, ..., yN which
are distributed according to the exponential density

f(yi|γ) =
{

γ exp(−γyi), for yi > 0,

0, for yi ≤ 0.
(10)

Here γ is an unknown scale parameter (intensity) and the parameter space Γ = E1
is the open subset of R. This model is a special case of the model (1).

4.1. The exact LR test of the intensity.

We consider the test

H0 : γ = γ0 versus H1 : γ �= γ0 (11)

in the model (10).

Theorem 4.1.1.

The test statistics − lnλ of the LR test to the hypothesis (11) has the form

τN (y) = GN (γ0
N∑

i=1

yi)−GN (N) (12)

and τN = RN , where RN is the ”radial” component of the IN (y, γ0) (see (8)) .

Under the null hypothesis the c.d.f. and the density of τN is given in the Theorem
3.2.2. where we take δ = 1 and the Wilks statistics −2 lnλ has the c.d.f. of the form

FN (τ) =

{ FN (−NLW(−1,−e−1−
τ
2N ))−FN(−NLW(−e−1−

τ
2N )), τ > 0,

0, τ ≤ 0,
(13)

and the density of the form

fN (τ) =

{ 1
2{h(N, 1, τ

2 , 1)− h(N, 0, τ
2 , 1)}, for τ > 0 ,

0, for τ ≤ 0.

The proof is presented in Appendix B.

Table 3 contains the critical constants cα,N of the LR test −2 lnλ on the level of
significance α in small dimensions N obtained from its exact distribution (13).

Table 3. Critical constants cα,N .

α \N 1 2 3 4 5
0.005 8.852997810 8.460579550 8.287166100 8.192107640 8.132601599
0.01 7.498403700 7.136930670 6.983699006 6.901147440 6.849915290
0.02 6.15478803 5.831756370 5.700796220 5.631435842 5.588746670
0.05 4.407670803 4.149077148 4.050520530 3.999436000 3.968318015

4.2 Comparison with the χ2-asymptotics.

The MLE γ̂ of the parameter γ in the model (10) is consistent and −2 lnλ has
asymptotically χ21-distribution (c.f. Wilks, [10]). In this Section we present how the
exact distribution of the LR test differs from the asymptotic one.

Let us present the Table 4 of the critical constants kα obtained from the asymp-
totic χ21-distribution of the −2 lnλ on the level of significance 0.005, 0.01, 0.02 and
0.05.



Table 4. Critical constants kα .

α kα

0.005 7.879438577
0.01 6.634896601
0.02 5.411894431
0.05 3.841458821

The following Table 5 shows that the exact levels of significance αe,N of the critical
constants kα are higher in small dimensions N than the asymptotic ones.

Table 5. The exact levels of significance αe,N .

α \N 1 2 3 4 5
0.005 0.008224735 0.006771825 0.006204483 0.005908783 0.005728607
0.01 0.015599286 0.013037809 0.012058871 0.011552053 0.011244013
0.02 0.029448482 0.025065314 0.023424550 0.022579936 0.022067611
0.05 0.067701923 0.059361294 0.056314364 0.054754992 0.053810812

α \N 10 20 30 40 50
0.005 0.005364607 0.005182040 0.005121267 0.005090910 0.005072708
0.01 0.010622626 0.010311006 0.010207222 0.010155366 0.010124268
0.02 0.021035190 0.00517344 0.020344780 0.020258532 0.020206799
0.05 0.051909321 0.050954881 0.050636560 0.050477398 0.050381907

Appendix A. The Lambert-W function satisfies

LW(z)eLW(z) = z.

As the equation y exp(y) = z has an infinite number of solutions yk for each (non-
zero) value of z ∈ C, Lambert-W has an infinite number of branches. Exactly one
of these branches is analytic at 0. Usually this branch is referred to as the principal
branch of Lambert-W, and is denoted by LW(z) or LW(0, z). The other branches
LW(k, z), k ∈ Z \ {0} all have a branch point at 0. The principal branch and
the pair of branches LW(−1, z) and LW(1, z) share an order 2 branch point at
point − exp(−1). The branch cut dividing these branches is the subset of the real
line from −∞ to − exp(−1), and the values of the branches of Lambert-W on this
branch cut are assigned using the rule of counter-clockwise continuity around the
branch point. This means that LW(z) is real-valued for z ∈ (− exp(−1),∞) and
similarly, the branch corresponding to −1, LW(−1, z), is real-valued on the interval
(− exp(−1), 0). For all the branches other than the principal branch, the branch cut
dividing them is the negative real axis. The branches are numbered up and down
from the real axis (this is very similar to the way the branches of the logarithm are
indexed by the multiple of 2πi which must be subtracted from the imaginary part
to recover the principal branch).

The asymptotic behavior of the Lambert-W at complex infinity and at 0 (for the
non-principal branches) is given by



LW(k, z) ∼ ln(k, z)− ln(ln(k, z)) +
+∞∑

m,n=0

{c(m,n) ln(ln(k, z)}m+1

ln(k, z)m+n+1
,

where ln z denotes the principal branch of the logarithm,

ln(k, z) = ln z + 2kπi

and the c(m,n) are constants independent of k. The expansion for LW(−1, z) is
not valid for z → 0 along the negative real axis (the effect of the branch point at
− exp(−1) must be considered), but holds otherwise.

Without the proof (which is rather technical) we present the following Lemma:

Lemma.

Let v > 0. Then for u > Gv(v) we have the following expressions in terms of
Lambert-W function:

minG−1
v (u) = −vLW(0,−e−

u
v

v
)

and

maxG−1
v (u) = −vLW(−1,−e−

u
v

v
).

Here minG−1
v and maxG−1

v are selectors of the multifunction G−1
v :< Gv(v),+∞)→

2R. Further let us define fk(x) = LW(−k,−e−x), x > 1, k = 0, 1.

Then fk ∈ C1((1,+∞),R) and f ′
k(x) = − fk(x)

1 + fk(x)
holds.

Previous Lemma shows that all densities and c.d. functions in this paper are
real-valued functions and gives the formula for computing of derivatives.

The Lambert-W function has a good implementation in mathematical software
such as Matlab 5.3 or Maple V Release 5.1. For more information see Corless [2].

Appendix B.

Proof of the Theorem 4.1.1. The LR to the hypothesis (11) is

λ(y) =
f(y|γ0)
f(y|γ̂) (14)

where f(y|γ) = γN exp{−γ
N∑

i=1
yi} and γ̂ = N{

N∑
i=1

yi}−1 is the MLE of the parameter

γ. Putting it into the (14) we obtain the formula (12). Application of Theorem 3.2.1.
completes the proof.

�
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