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SHAPES OF RANDOM CLOSED SETS

IVAN SAXL AND PETR PONÍŽIL

Abstrakt. Abstract. The shape properties of Voronoi polytopes generated by
various point processes are examined and discussed.
Abstrakt. Svojstva formy oblastej Dirihle (Voronogo) generiro-
vannyh razliqnymi toqeqnymi processami issledovany i diskuti-
rovany.

1. Introduction

Random tessellations are useful stochastic models of natural space filling sys-
tems (grains of polycrystal, cell of living tissues etc.) as well as of various products
of human activities (jurisdictions, districts of administration, allotments etc.) Non-
convexity of real tessellations is usually relatively small and convex tessellations
are quite suitable and acceptable approximations. Voronoi tessellation is perhaps
the most suitable model of such systems; its general definition is as follows: let
L be a a discrete set in R

d (e.g. a lattice or point process) and let φ be a posi-
tive definite quadratic form on R

d. Then the Voronoi cell generated by xi ∈ L is
Ci = {y ∈ R

d|φ(y − xi) ≤ φ(y − z) for all z ∈ L − {xi}}. The union T of all cells
forms a face-to-face tiling of R

d with properties depending on L. It is also an affine
image of another tiling whose tiles are Voronoi cells defined with respect to the stan-
dard quadratic form and another suitable discrete set L. Usually the term Voronoi
cell is used only to cell defined with respect to the standard Euclidean metric [10]
but it is useful to keep in the mind that the basic property of T , namely tiling the
space, is not lost by affine transformation (e.g. tiling by rhombohedra can by obta-
ined by shearing a tiling by cubes). The general reference for Voronoi tessellations
is [10], more general aspects of congruent tilings are reviewed in [7, 18] and with a
particular respect to crystallography in [2]. The terminology is far from being unified
as it happens frequently when one idea is developed in several distinct branches of
science. Consequently, in a small review like this one, the various terms describing
the same property must be at least occasionally mentioned.

A tessellation is described by the distributions of its cell characteristics. The size
dependent characteristics are homogeneous functions of degree −k/d of the intensity
λ = 1/Ev, i.e. E• (αλ) = α−k/dE• (λ). In R

3, k = 3 for the cell volume v, k = 2 for
the cell surface area s and k = 1 for themean (with respect to projection orientation)
cell breadth w. Consequently, it is sufficient to examine the unit tessellations only.

The shape characteristics like mean dihedral angle Θ, randomly selected dihedral
angle θ - i.e. a ”typical” angle of a ”typical” cell, number of cell faces nf and
”isoperimetric” shape factors g = 6v

√
π/s3, f = 6v/(πw3) are independent of λ (the

shape factors g = f = 1 for a ball thus expressing the statement of the isoperimetric
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and Bierbach inequalities, namely that of all convex bodies of fixed volume, the ball
has the smallest surface area as well as mean breadth).

Any 3D tessellation T induces in section planes F a 2D tessellation T ′ = T ∩F of
intensity λ′ = 1/Ev′ = λEw. The mean values of its size characteristics (cell area v′,
perimeter s′) obey the stereological relations [18] Ev′ = Ev/Ew, Es′ = 0.25πEs/Ew
and its shape parameters are edge number ne = 2/(1−EΘ′/π), random edge angle θ′

and shape factor f ′ = 4πv′/s′2. If the tessellation is stationary isotropic, the plane F
is arbitrary, otherwise the averaging relates to a suitably defined set of planes. The
properties of induced tessellations are of particular importance as e.g. the grain size
estimation so substantial in metallurgical praxis is completely based on the inference
acquired in planar sections.

A short paper on shapes of Voronoi cells covering only tessellations generated
by Neyman-Scott cluster fields with rather limited cluster cardinality N ≤ 30 was
published two years ago [14]. From that time on, the range of examined tessellations
was considerably extended and generating processes L include displaced lattices of
several types, hard-core and Gibbs models at one side and locally inhomogeneous
Bernoulli cluster fields and mixtures on the other one. Shape properties of Voronoi
cells are, in fact, properties of space filling polyhedra. That is why the first part
of the paper - chapter 2 - reviews selected results concerning tiling by congruent
polyhedra - an old problem started by Plato and Aristotle and constituting also the
second part of the Hilbert’s eighteen problem (the term tiling instead of tessellation
is commonly preferred in this connection). Moreover, several such tilings are the
limit cases of random tessellations generated by displaced lattices. The body of the
paper reports the authors’ recent results obtained by computer simulation.

2. Polyhedral tilings

2.1. Basic types.

2.1.1. Monohedral tilings, prototiles. Tiling T , in general, is the covering of R
d by

sets - tiles - with pairwise disjoint interiors. It is monohedral if each tile is congruent
to a fixed set called the prototile, which is a homeomorphic image of the unit d-
ball. All possible prototiles are neither found nor at least classified even in R

2.
However, if a 2D prototile is bounded it must be a convex n-gon with 2 < n ≤ 6.
In higher dimensions, the problem is intractable and many examples of n-hedra,
n = 4, 5, 6, 7, 8, 10, 12, 14, 18, ..., tiling R

3 are described in the series of papers by
Goldberg (e.g. [5, 6]). It is not even known whether the number of combinatorial (=
isomorphic) prototiles is finite and whether there is an upper bound on the number
of faces. Consequently, a substantial restriction of the problem is necessary.

2.1.2. Isohedral tilings, stereohedra. Any Euclidean motion of R
d mapping each tile

of T onto a tile of T is called the symmetry of T ; the set of all symmetries of T
forms the discrete symmetry group S(T ). Tilings in which S(T ) acts transitively on
the tiles are called isohedral and their prototiles are called the stereohedra. Their sig-
nificant property is that the number of their faces has an upper bound. By Delaunay
theorem [2], nf ≤ 2d(1 + a) − 1, where a is the number of aspects of the prototile
(an aspect is a transitivity class of tiles with respect to the translation subgroup of
S(T ) - for details see [2, 7]). In R

3, the maximum number of aspects is 48, hence
nf ≤ 390. However, the most complicated Voronoi cell found as yet had 38 facets [2].
The second part of the Hilbert’s eighteen problem can be formulated in the above
introduced terminology as follows [7]: Does there exists an anisohedral polyhedron
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in R
3? The affirmative answer was given by Reinhardt in 1928. It is sufficient to find

planar anisohedral prototiles and to take them for bases of prisms. Several examples
of such planar prototiles with the corresponding references are shown in [7]; it should
be noted that they need not be non-convex, the congruence can be direct and a tiling
face-to-face (see below).

2.1.3. Voronoi and lattice tilings, plesiohedra and parallelohedra. Further restriction
of the problems is achieved by considering only tilings generated by point sets via
Voronoi cells; frequently also the terms Dirichlet domains or plesiohedra (πλησιoς -
neighbouring) are used. Voronoi cell (with respect to the standard Euclidean metric)
adjoins to any point of the generating system L all points of the embedding space
lying closer to it than to any other point of the system. Voronoi tiling generated by
an arbitrary point set is a face-to-face tiling (i.e. Ci ∩ Cj is either ∅ or a common
face of Ci, Cj). A tiling is called primitive (also the terms ordinary equilibrium state
or normal tessellation are used in stochastic geometry) if exactly d− k+ 1 adjacent
parallelotopes meet in every its k-facet (0-facet is a vertex, 1-facet is an edge, (d−1)-
facet is a face). Voronoi [20] has shown that the necessary and sufficient condition
of primitivity is that this rule might hold for vertices, i.e. just (d + 1) cells meet
in each vertex. The numbers of k-facets of primitive prototiles are not independent;
e.g. the number of vertices nv = 2(nf − 2) and the number of edges ne = 3(nf − 2)
in R

3. All random tessellations examined in chapters 3 and 4 are primitive and it is
sufficient to consider only the number of their faces nf .

Voronoi tilings generated by translation point lattices and called lattice tilings
are perhaps the best analysed subclass of isohedral tilings; their prototiles are called
parallelohedra. Voronoi [20] found the upper bound of the number of vertices for
parallelohedra nv ≤ (d + 1)! and also the upper bound of the number of faces has
been found by Minkowski [9] nf ≤ 2(2d − 1) (two congruent sets have the same
aspect if one is a translate of the other, i.e. a = 1 in the Delaunay theorem).

The numberNd of combinatorial types of parallelohedra is limited;N2 = 2 - paral-
lelogram and centrally symmetric hexagon, N3 = 5 - parallelotope, hexagonal prism,
rhombic and elongated (eight rhombic and four hexagonal faces) dodecahedrons,
tetrakaidecahedron (Fedorov [3]). Three of them are the prototiles of common cubic
lattice tilings: cubic simple (cs - NaCl) - cube, cubic body-centred (cb - e.g. Fe, Cr,
Mo, W) - tetrakaidecahedron, cubic face-centred (cf - e.g. Cu, Al, Ni) - rhombic do-
decahedron. The prototile of the hexagonal close-packed lattice (e.g. Zn, Mg, Zr) is
also a dodecahedron with eight rhombic and four trapezoidal faces combinatorially
equivalent to the rhombic dodecahedron - see below. Tetrakaidecahedron has the
maximum attainable number nv = 24 of 3-valent vertices (the number of edges me-
eting in a vertex of an isolated polyhedron) and also the maximum possible number
of faces nf = 2(2d − 1) [9]. It is the only primitive of the Fedorov five basic space
fillers. Rhombic dodecahedron has six 4-valent vertices and eight 3-valent vertices
whereas cube with eight 3-valent vertices is the least primitive of them.

2.2. Packing, covering and extremum problems. Isohedral tilings are closely
connected with packings and coverings problems, namely in the selection of the
densest packing (the packing density δK ≤ 1, which is intuitively the ratio of the
sum of the volumes of the packed bodies K to the volume of the covered space, is
maximum) and of the thinnest covering (the analogically defined covering density
ϑK ≥ 1 - the ratio of the sum of the volumes of the covering bodies K to the volume
of the covered space, is minimum) [4]. Packing and covering densities of monohedral
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tiles equal 1, but the to packing and covering densities of spheres inscribed and
circumscribed to particular tiles attract a considerable attention.

In the planar case, the closest packing of circles is that one of circles inscribed to
the tiling by regular hexagons (δK = π/

√
12 = 0.9069) and the thinnest covering is

that one of the circles circumscribed to the same hexagons (ϑK = 2π/
√
27 = 1.209).

The hexagonal tiles are Voronoi cells of the circle centres and are also the solution of
another extremum problem: to find a it thinnest tiling, namely that one of minimum
perimeter at a given (unit, say) area. Thus the tiling by regular hexagons solves the
all three extremum problems in R

2. A direct generalization of this idea to higher
dimensions is straightforward, namely we can look for tilings with the smallest size
characteristics like surface area, mean breadth etc., or in other words, for the thinnest
tilings with respect to w, s etc. The values of the corresponding characteristics of
a d-ball are the lower bounds due to already mentioned isoperimetric inequality
and its generalizations and it is therefore reasonable to introduce shape parameters
of the type introduced in chapter 1, namely normalized with respect to the values
appropriate for d-balls.

In R
3, a different situation is encountered. Replacing the circles in the densest

hexagonal packing by spheres of the same radius, an elementary layer A of a three
dimensional packing is formed. The sphere centres may be then considered to be
the nodes of a {111} plane of the cubic face-centred lattice (cf). Shifting the la-
yers subsequently by 1

2 < 1,−1, 0 > the layers B, C and again A are formed and
the whole half-space is filled by the stacking ABCABC.. .; similarly its complement
is formed by shifts in the opposite direction. The Voronoi tiles of the sphere cen-
tres are rhombic dodecahedrons, the packing density is δK = π/

√
18. That this

is just the densest sphere packing was conjectured by Kepler or perhaps a few
years before by T. Harriot (Sir Walter Raleigh’s mathematical assistant). Fergus-
son and Hales claim to prove Kepler conjecture in 1998 by a sophisticated compu-
tational approach, but it seems that their proof is not yet generally accepted - see
http://www.math.lsa.umich.edu/∼hales/.

Tab. 1 Packing and covering densities, prototile characteristics (v = 1).

δK ϑK s w
tetrakaidecahedron (cb) 0.680 1.464 5.315 1.336
rhombic dodecahedron (cf) 0.742 2.0946 5.345 1.375
cube (cs) 0.524 2.721 6 1.5

Harriot was also the first to notice that there is another packing of the same δK ,
namely that one of the hexagonal closed packed lattice with stacking ABABAB.. .
created by the shift sequence 1

2 < 1,−1, 0 >→ 1
2 < −1, 1, 0 > →

1
2 < 1,−1, 0 > ....

The Voronoi tile is again a dodecahedron with 6 rhombic and 6 trapezoidal faces.
The covering density is ϑK = 2π/3 in the both cases. Spheres centred in the nodes
of the body-centred cubic (cb) lattice have smaller packing density (Tab. 1) but
the thinnest covering ϑK = π

√
125/24. Hence the extremum properties are split

between face-centred and body-centred cubic tilings. The latter of them also solves
the problem of minimum surface density. Assuming a unit tiling, the thinnest tiles
must have minimum surface s - see Tab. 1. For a comparison, the spheres centred
in the nodes of the cubic simple (cs) lattice have δK = π/6 only and ϑK = π

√
3/2.

Tab. 2 Shape characteristics of basic parallelotopes.
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nf ne nv f g θ Eθ′ f ′ Ev′ CV v′

cb 14 36 24 0.800 0.868 24×2.186 2.0944 0.81 0.748 0.532
12×1.91

cf 12 24 14 0.735 0.860 2.0944 2.0944 0.81 0.727 0.565
cs 6 12 8 0.566 0.724 π/2 π/2 0.67 0.666 0.642

The numerical values of packing and covering densities as well as the size characteris-
tics of cubic lattice tilings are shown in Tab. 1, shape properties of the corresponding
tiles are in Tab. 2. As another confirmation of the tetrakaidecahedron perfection,
also the values of the mean profile areas Ev′ and of the corresponding coefficients
of variation CV v′ in the 2D tessellations induced by cubic lattice tilings are shown.
The fraction of small profiles is small, the mean value Ev′ is the highest and CV v′

is the smallest. The shape factors are also the highest of all. Note for a comparison
that a unit ball has s = 4.836 and w = 1.241.

3. Random tessellations

3.1. Generating point fields. All examined point fields can be introduced in
terms of the germ-grain model [18]. The germs constitute either a point lattice
denoted by L or the stationary Poisson point process (PPP) denoted in this con-
text by P, their intensities are λp. The grains implanted in the germs include se-
veral alternatives as follows (for details see [11, 12, 13, 15] and the Internet page
http://fyzika.ft.utb.cz/voronoi/).

3.1.1. Displaced lattices (pseudo-hard-core models). Grains which are i.i.d. replicati-
ons of randomly shifted origin (random shift vector ξ) change the lattice of germs
L (nodes xi, say) into the Bookstein model on the lattice [19] (displaced lattice
process, points zi = xi + ξ). The model is widely used in physics and also in the
stochastic theory of shape. The shift distribution is usually 3D normal N(0,Σ2) dis-
tribution with the covariance matrix Σ2 = a2I, where I is the unit matrix. The
process characteristics are the type of the displaced lattice and parameters of the
shift distribution.The generated tessellations accomplish the bridge between the ori-
ginal isohedral tiling (a = 0) and the Poisson-Voronoi tessellation (PVT) generated
by the stationary Poisson point process (a → ∞). Above mentioned three cubic
lattices have been chosen as L; the notation is Bcs, Bcb, Bcf.

3.1.2. Hard-core models. If the grain is either the origin (the germ is retained) or
the void set (the germ is removed) then the resulting process is either independent
or dependent thinning of the germs; Bernoulli lattice process is perhaps the most
familiar example of the former case. Hard-core processes like Matérn I (MI) and II
(MII) type processes and SSI (simple sequential inhibition) process [18, 19] exemplify
the latter case - dependent thinning of the Poisson point process (PPP) of intensity
λ0. The attained intensity of the thinned process λ• = p•λ0, where p• is the Palm
retaining probability of a ”typical point” [18], namely the average relative gain of the
thinning process; • stands for I, II and SSI. The key parameters are the minimum
allowable distance between points (the hard-core distance) D or, equivalently, the
packing fraction fp attained by implementing balls of diameter D into the retained
germs.

3.1.3. Cluster fields. Grains are random point clusters Z characterized by the clus-
ter cardinality (usually Poisson distributed) NZ with the mean N , by the spatial
arrangement (globular - G, spherical - S) of points (daughters) forming the cluster
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BePG BePS

Obrázek 1. Planar sections of 3D tessellations generated Bernoulli
cluster fields BePG and BePS (N = 50, p = 0.5, δ = 0.05). The small
inner cells of BePG are not perceptible in the 2D section.

and by the cluster size (e.g. by the the embedding ball diameter D usually expres-
sed as the scale independent parameter δ• = D/ρp(•), where ρp(•) is the mean
nearest neighbour distance of the germs). Bernoulli cluster field [16] is a model of
independent clustering: random point clusters are implanted in the parent points
(which are then removed) with a probability 0 ≤ p ≤ 1; the resulting intensity is
λ = (pN + 1 − p)λp. The process represents a continuous passage between PVT
(p = 0) of germs and Neyman-Scott cluster field (p = 1) or germ lattice and lattice
of clusters (the notation PG, PS is used for the point fields as well as for tessellations
generated by them). If 0 < p < 1, δ � 0.1 and N is high, the generated tessellation is
a (1− p) : p mixture of large and only slightly corrugated parent cells and of similar
cells fragmented into NZ small cells - Fig. 1. A growth of the cluster size δ leads to
a gradual dissolution of clusters and all cluster fields approaches PPP.

3.1.4. Mixtures. The last examined point field is the Bernoulli mixture process -
BeMX. Pieces of another process X of intensity λm (PPP, displaced lattices) are
implanted with a probability 0 ≤ p ≤ 1 into the interior of pre-cells generated by the
parent process (PPP) of intensity λp � λm. The resulting point process of intensity
pλm + (1− p)λp is the union of these pieces and parents of the void pre-cells. The
tessellation generated by it consists of cells corresponding to the implanted process,
somewhat reduced parent cells and of intermediate layers of elongated cells cutting
the original faces between fragmented and unchanged pre-cells - Fig. 2.

3.2. Basic features, inner and outer cells. An important feature of tessellations
generated by globular cluster fields are s.c. inner cells introduced in [12, 13]. Points
of spherical clusters fragment the parent cell into more or less similar pyramidal
cells nearly each of which has a base formed by a part of the parent cell boundary.
Consequently, nearly each generator has a neighbour belonging to another cluster -
hence the term outer cells.

For clusters of the G–type, the situation is similar only if the cardinality NZ of
the cluster Z is small. Starting with NZ = 5, it may happen that all neighbours
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BeMPVT BeMBcf

Obrázek 2. Planar sections of 3D tessellations generated by Ber-
noulli mixtures (p = 0.1) with PVT (λm = 200λp) and Bcf
(λm = 30λp, a = 0.0005, i.e. only a slightly disturbed isohedral
tiling). Pre-cells are in the both cases generated by PVT.

of a generating point are points of the same cluster; the cell generated by such a
point lies completely in the interior of the parent cell and will be called the in-
ner cell. The proportion αN of inner cells is a monotone increasing function of N
(α20 ≈ 0.25, α30 ≈ 0.4, α99 ≈ 0.6, α200 ≈ 0.7). Nearly all properties of tessellations
generated by cluster fields can be explained by using the concept of inner and outer
daughters. Only occasionally small false inner cells are formed in PS tessellations
at high values of N , namely when the distance of two parent points is comparable
with the ball size c and two spherical clusters are mixed together. If the cluster
size is small enough in comparison with the distances of parents the distributions of
the majority of cell characteristics in tessellations generated by globular clusters are
bimodal and heavy-tailed. The cells of opposite types produce very distinct modes
and usually contribute to the opposite tails of the distribution in question. The type
(P,L) of the parent arrangement does not influence this behaviour. In contrast to
this situation, PS tessellations have unimodal distributions of cell properties.

In Bernoulli cluster fields, a particular mode in cell property distributions corre-
sponds to the original unbroken parent cells. Consequently, the cell volume distri-
bution is roughly bimodal with the mode ratio approximately 1:N in the case of
spherical clusters BePS and trimodal in the case of globular clusters BePG.

A suitable characteristic sorting the tessellations with respect to the regularity of
their spatial arrangement is the coefficient of variation of the cell volume CV v. The
examined tessellations have been generated by various random point fields described
in the literature [18, 19]; they cover a wide range of space filling systems from
isohedral tilings to highly locally inhomogeneous cases characterized by multimodal
distributions of cell properties and 0 ≤ CV v ≤ 8 - see Tab. 3. However strange the
Bernoulli cluster field may seem, they have been introduced by the authors in order
to model grain structures of rather common low alloyed steels after certain thermal
treatment.
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4. Results of simulations

The method of simulation is described in [12]. In [14], the results obtained for
PG, PS cluster fields with N ≤ 30 are described. In the present paper, the range of
the investigation is extended up to N = 200, δ = 0.05, added are Bernoulli cluster
fields (at δ = 0.05, p = 0.5 unless otherwise stated) and Bernoulli mixtures (PVT
& PVT at p = 0.1). Moreover, tessellations generated by hard-core processes and
displaced lattices are included. The former are represented by the Matérn type II
process at the maximum attainable value of packing fraction fp = 0.125 and by
SSI model at the packing fraction fp ≈ 0.28. For related results concerning Strauss
model see [1]. A wide range 0 ≤ a ≤ 10 of the shift standard deviation was covered in
tessellations generated by Bcs, Bcf and Bcb displaced lattices; their differences from
PVT are negligible at the upper bound of a, at least as far as cell characteristics are
examined. However, the attention was given mainly to a small randomization of the
isohedral tilings; hence the values in tables relates to a = 0.05.

The results are presented mostly in tables. The arrows in their rows point in the
direction of growing cluster cardinality N (e.g. the left arrow in the PS row of Tab.
3 shows indicates that nf decreases with growing N).

4.1. Number of faces.
Tab. 3 Face and edge numbers, coefficient of variation CV v (the maximum values

relate to the sample size ≈ 106).

N or a var n′ Max n′ Enf var nf Max nf CV v
Bcb 0.05 2.53 10 14.00 0.0013 15 0.043
Bcf 0.05 2.17 12 14.09 1.10 18 0.044
Bcs 0.05 2.54 13 15.93 4.68 26 0.054
SSI - 2.41 15 15.03 3.54 25 0.136
M II - 2.54 15 15.3 6.08 29 0.238
PVT - 2.863 15 15.536 11.125 38 0.423
PS 30→200 2.6 15 15.2←16 25→29 58 1.10→1.28
PG 30→200 4.0 16 15.5←16 21←28 50 1.74→3.07
BeMPVT 50→200 3.5 21 15.1 18→19 86 1.55→2.97
BePS 30→99 5.5→6 27 14 - 15.5 65→100 130 2.94→5.29
BePG 30→200 5→6 27 14 - 15.5 35←40 120 3.03→7.86

4.1.1. Hard-core and pseudo-hard-core tessellations. Even the smallest shifts of ge-
nerating points double the face number of non-primitive tiling by cubes - Fig. 3a; the
tiles are truncated in all its vertices, the mode is 16 but pentakaidecahedrons and
heptakaidecahedrons have only slightly lower frequencies and the pdf is fairly stable
up to a = 0.05. Neither dodecahedronal tiling is primitive and an abrupt change
in nf is necessary however small is a. Nevertheless, the pdf of nf is narrow and
tetrakaidecahedra and pentakaidecahedra strictly prevail at small a (≤ 0.05). On
the other hand, the primitive tetrakaidecahedronal tiling is very stable, polyhedrons
with nf �= 14 are nearly completely excluded and a wider range 13 ≤ nf ≤ 17 starts
to be covered not sooner then at a ≥ 0.1. Note the great differences in var nf between
Bcb, Bcf and Bcs at a = 0.05 (Tab. 3). A relatively high value of var n′ in Bcb is
the consequence of more acute corners of the tetrakaidecahedron in the comparison
with rhombic dodecahedrons (the fraction of triangular profiles is 0.03 and 0.07 in
2D tessellations induced by cf and cb tilings, respectively). The both hard-core pro-
cesses are roughly comparable with the Bcs displaced lattice at a = 0.05; the effect
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Obrázek 3. a) The change in Enf in tessellations generated by
displaced lattices: Bcb (full line), Bcf (dashed) and Bcs (dotted).
b) The change in shape factors Eg, Ef in tessellations generated
by displaced lattices (line styles as in Fig. 3a; for a comparison the
result for tessellations generated by the SSI hard-core model (dash-
dotted line) is shown.
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Obrázek 4. Probability density functions of the cell face number
nf in BePG (a) and BePS (b) tessellations (p = 0.5). The quasi-
symmetrical pdf belongs to PVT, the mode heights increase along
the sequence N = 30, 50, 70, 99, 200.

of doubled packing fraction fp and more pronounced ordering of SSI is reflected by
a lower value of var nf in comparison with M II.

4.1.2. Cluster field tessellations. Enf changes only moderately with increasing N ,
however, var nf is much greater in the both cluster field tessellations than in PVT
(Tab. 3). The pdf’s of nf have heavier tails caused by the presence of inner cells with
low number of faces (tetrahedral and pentahedral inner cells are rather frequent at
N � 10, say) and by outer cells with very high number of faces. However, in PG
tessellations at high N , the interior of the cluster embedding ball is already a small
piece of PVT, the inner cells with low nf vanish and simultaneously the proportion
of outer cells decreases; consequently, a slow diminution of var nf follows. On the
other hand, the growing number of interacting outer cells belonging to different
clusters ensure a steady growth of var nf in PS tessellations - see Fig. 4 and note
shifts of the nodes in the opposite directions in BePG and BePS tessellations. This
behaviour was already observed in the interval 1 ≤ N ≤ 30 and was discussed and
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Obrázek 5. Probability density functions of the random dihedral
angle θ in tessellations generated by Bookstein models at a = 0.005
(full line), 0.05 (dotted) and 0.2 (dashed).

documented in [14] for PG and PS cluster fields.
In BePG and BePS tessellations, the lower bound of nf ≈ 14 (without an arrow)
relates to p = 0.1, whereas the upper bound corresponds to PVT; the effect of N is
not substantial (the arrow was omitted accordingly). The maximum values of var nf

are attained at p = 0.5 when also CV v is maximum and they increase with growing
cluster cardinality. The mean value En′ = 6 is obligatory for all primitive (normal)
tessellations, var n′ is higher than in PVT but does not change substantially above
N = 30. In BePS and BePG fields, the fragmentation of the original parent cell
boundary without implanted cluster by small outer cells of fragmented neighbours
is so high that quite extremal values of Max nf can be observed (Tab. 3) and the
effect of increasing N is perceptible even in sections.

4.2. Dihedral and edge angles.

Tab. 4 3D dihedral angles.

N or a Eθ var θ EΘ var Θ
Bcb 0.05 2.09 0.017 2.09 0.000002
Bcf 0.05 2.09 0.043 2.09 0.0018
Bcs 0.05 2.09 0.112 2.09 0.0043
SSI - 2.09 0.086 2.09 0.0021
M II - 2.08 0.122 2.08 0.0065
PVT - 2.06 0.179 2.07 0.0125
PS 30→200 2.04 0.503→0.563 2.04 0.024←0.027
PG 30→200 2.04→2.05 0.281←0.373 2.04→2.05 0.019←0.024
BeMPVT 50→200 2.05 0.223 2.05 0.017←0.019

4.2.1. Hard-core and pseudo-hard-core tessellations. The estimation of dihedral an-
gles confirms the great stability of the tetrakaidecahedronal tiling - Fig. 5, Tab. 4:
only the narrow interval between the two possible values in the isohedral tiling is
covered at a = 0.005 and it becomes wider only slowly. The both Bcf and Bcs tes-
sellations cover considerably wider interval of values. On the other hand, the small
differences in pdf’s of the edge angle θ′ (Fig. 6) demonstrate how much of information
is lost in induced tessellations.
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Obrázek 6. Probability density functions of the random dihedral
angle θ′ in the induced 2D tessellations generated by Bookstein
models at a = 0.005 (full line), 0.05 (dotted) and 0.2 (dashed).
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Obrázek 7. Probability density functions of the random dihedral
angle θ (a) and of the 2D shape factor f ′ (b) in PVT (full line) and
in PG, PS tessellations at δ = 0.05. PG: N = 50 (densely dotted),
200 (dashed), PS: N = 50 (dash-dotted), 200 (dotted).

4.2.2. Cluster field tessellations. The main change produced in the boundaries of
parent cells are new edges created at their intersection with the symmetry planes
of closely spaced pairs of daughters; the corresponding dihedral angle is close to the
value of π and its frequent occurrence gives rise to the significant secondary mode
in the pdf of the random dihedral angles θ, θ′ [14] - Fig. 7a.

The dihedral angle θ examined here is the random dihedral angle - one dihedral
angle is selected uniformly at random from each cell. The mean value of θ remains
nearly unchanged as together with the straight angles mentioned above also two
approximately right angles are created. The behaviour of pdf’s at N ≤ 30 is shown
and discussed in [14]. In PG tessellations, the pdf of θ approaches that one of PVT
at higher values of N : the inner cells with low face numbers and low dihedral angles
gradually vanish. In PS tessellations, the mode systematically shifts to lower values
as a manifestation of growing proportion of flat, wedge and pyramidal cells and the
increasing fragmentation complexity of parent cells ensures a steady growth of var θ.
The distribution of the edge angles - in particular the presence of the secondary mode
at θ′ → π - in the induced planar tessellations is very similar, hence clusters manifest
themselves very clearly this way also in planar sections - Tab. 6.
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Obrázek 8. Probability density functions of the mean 3D shape
factors Ef (a) and Eg (b) in PVT (full lines) and at δ = 0, 05 in
PG, PS tessellations. PG: N = 50 (densely dotted), 200 (dashed),
PS: N = 50 (dash-dotted), 200 (dotted).

The values for BePS (BePG) tessellations vary between PVT and PS (PG) tes-
sellations.

4.3. Shape factors.
Tab. 5 3D shape factors (the sample size ≈ 106).

N or a Ef min f Eg min g
Bcb 0.05 0.788 0.739 0.862 0.828
Bcf 0.05 0.749 0.688 0.856 0.828
Bcs 0.05 0.615 0.552 0.755 0.713
SSI - 0.686 0.535 0.804 0.691
M II - 0.639 0.400 0.772 0.580
PVT - 0.579 0.1 0.728 0.2
PS 30→200 0.13←0.32 0.00002 0.46←0.57 0.0002
PG 30→200 0.34→0.39 0.00006 0.55→0.60 0.01
BeMPVT 50→200 0.52±0.01 0.01 0.69±0.01 0.2

4.3.1. Hard-core and pseudo-hard-core tessellations. The shape factors are f ∝ w−3

and g ∝ s−2/3 in unit isohedral tessellations. Tetrakaidecahedrons create the thin-
nest tiling with respect to the both surface area s and mean breadth w, hence the
both shape factors must have the highest values attainable by an isohedral tiling
in R

3. Note also - Fig. 3b, that the remaining two displaced cubic tessellations be-
come thinner with respect to the both s, w on growing a, i.e. f, g increase in certain
interval of small values of a.

The range of shape factors f, g is relatively narrow in hard- and pseudo-hard-core
tessellations and in PVT, no extremely thin or flat cells develop. On the contrary,
there is no lower bound on f ′ in the corresponding induced tessellations - Tab. 6;
highly elongated profiles are created whenever a section plane passes near an edge
approximately parallel with it.

4.3.2. Cluster field tessellations. A secondary mode near f ≈ 0 in the distribution of
the shape parameter f - Fig. 8 - is observed in tessellations generated by cluster fields
of both types but it is insignificant and occurs at higher values of N in tessellation
produced by spherical fields. It is produced by rod-like cells of small volume v and
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appreciable mean breadth w. A comparable fraction of plate-like cells would create a
similar mode near zero in the distribution of the shape factor g, but this distribution
is the only one which is strictly unimodal; hence plate-like cells must be rather rare.

Tab. 6 2D shape factor and edge angles (the sample size ≈ 106).

N or a Ef ′ min f ′ Eθ′ var θ′

Bcb 0.05 0.808 0.004 2.00 0.021
Bcf 0.05 0.808 0.003 2.02 0.020
Bcs 0.05 0.712 0.002 2.01 0.030
SSI - 0.760 0.002 2.01 0.25
M II - 0.739 0.002 2.01 0.29
PVT - 0.579 0.003 2.000 0.349
PS 30→200 0.6 0.001 2.00 0.513←0.576
PG 30→200 0.62 ≈ 0 1.96→1.97 0.584←0.61
BeMPVT 50→200 0.69±0.01 0.003 1.99 0.39→0.41
BePS 30→99
BePG 30→200

A distinct bimodality was observed also in the distribution of planar the shape
factor f ′, even in PVT [5]. The position of the secondary mode is rather stable.
Its probable cause is the abundant presence of triangular profiles formed whenever
a section plane hits a cell near its vertex (the mode value f ′ ≈ 0.6 is appropriate
to an equilateral triangle) and it is more pronounced in PG and PS tessellations -
Fig. 7. The values for BePS (BePG) tessellations vary between PVT and PS (PG)
tessellations.

5. Summary

In the examined sequence of hard- and pseudo-hard-core tessellations, a gradual
passage is accomplished from a regularity of point arrangement in translation lattices
to a complete independence of points in PPP. This passage is reflected by the dual
representation of point patterns through the properties of Voronoi cells, namely as a
passage from dense (in the sense of inscribed sphere volumes) and thin (with respect
to cell boundary properties) tilings to PVT. Its main features are an increase (not
always monotone) of the values and ranges of the face, edge and vertex numbers and
the loss of equiaxiality (decreasing shape factors and a continuous range of dihedral
angles spanning finally the whole interval (0, π)).

At small values of cluster size δ and growing cluster cardinality N , globular clus-
ter fields gradually realize a local point concentration. At sufficiently high N , the
points are compressed within the cluster embedding balls separated by large point-
less regions. The majority of them generates inner cells gradually approaching a
piece of PVT, which explains the ”left arrows” in the rows of the tables describing
PG tessellations. Only the points lying in the vicinity of the ball boundary generate
large outer wedge-, rod- and plate-like cells filling up the vast space between indivi-
dual clusters. These cells forming quasi-spherical bundles resemble cells of spherical
clusters and their properties differ from those of PVT - they have lower values of Eθ
and of shape factors and cover wider ranges of θ and nf . Their effect on the mean
values gradually fades out with growing N in PG cluster fields and the direction
of their gradual development - symbolized by ”right arrows” in the corresponding
table rows - must be examined in the PS fields only. Unfortunately even in such
fields, small PVT-islands are formed by clusters innate to PPP at high values of N .
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In the Bernoulli mixtures and Bernoulli cluster fields, the above described mixing
od various types of Voronoi cells can be better controlled than in pure PG and PS
fields.

Due to their scale independence, shape properties are very suitable for an explo-
ratory analysis of point patterns as well as of natural tessellations.
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