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ON CONVERGENCE OF A CLASS OF STOCHASTIC
ALGORITHMS

LADISLAV MIŠÍK, JOSEF TVRDÍK AND IVAN KŘIVÝ

Abstract. V tomto príspevku sa skúmajú otázky spojené s konvergenciou
obecnej triedy algoritmov pre globálnu optimalizáciu. Za istých predpokladov
sú dokázané nutné a postačujúce podmienky konvergencie takýchto algoritmov.
Ďalej je ukázaná jednoduchá metóda modifikácie ľubovoľného algoritmu uvažo-
vanej triedy na konvergentný algoritmus tejto triedy. Táto modifikácia môže byť
pritom ľubovoľne malá, aby podstatne neovplyvnila praktický beh pôvodného al-
goritmu. V experimentálnej časti sú aplikované dosiahnuté výsledky na niektoré
konkrétne algoritmy uvažovaných tried. Výsledky týchto pokusov potvrdzujú,
že z praktického hľadiska nemá splnenie požiadavky konvergencie významný
vplyv na chod algoritmu.

Rez�me: V �to� rabote rassmatriva�ts� voprosy kasa�wies� kon-

vergencii obwego klassa algoritmov dl� global~no� optimizacii.

Ixod� iz ves~ma obwih predpolo�eni� zdes~ dokazyva�ts� neobho-

dimye i dostatoqnye uslovi� konvergencii �tih algoritmov.Dal~xe

predlagaets� prosto� metod privedeni� l�bogo algoritma rassmat-

rivaemyh klassov k konvergentnomu algoritmu togo �e samogo klassa.

�ta modifikaci� mo�et byt~ proizvol~no malen~ka�, qtoby na prak-

tike ne vli�t~ na de�stvie original~nogo algoritma. V �ksperi-

mental~no� qasti raboty poluqennye rezul~taty primen��ts� k ne-

kotorym konkretnym algoritmam oboih klassov. Rezul~taty �tih

�ksperimentov pokazyva�t, qto vypolnenie uslovi� konvergencii ne

imeet na praktike suwestvennoe vli�nie na de�stvie algoritma.

1. Introduction

Let D ⊂ Rd. Denote by L the system of all Lebesgue measurable subsets of D
and λ the Lebesgue measure on L. Let f be a real Lebesgue measurable function
defined on D. The number m = inf{t ; λ(f−1(−∞, t)) > 0}, where f−1(A) = {x ∈
D ; f(x) ∈ A}, is called the essential minimum of f . The task is to find an arbitrary
good approximation of m.

1.1. Evolutionary algorithm. Let p0 be a probability measure on (D,L) which
is positive on each open subset of D. Let N be a positive integer called the size of
population and DN the set of all populations. Let π be a mapping defined on DN

assigning to each population P the probability measure π(P) on (D,L). Finally, let
{mn} be a sequence of numbers from interval 〈0, 1〉 and let C be a rule according to
which some points in the old population are replaced by new ones. We will consider
a class of evolutionary algorithms described as follows:
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I: Generate an initial population P0 = {x1, x2, · · · , xN} chosen as an indepen-
dent identically distributed sample according to the probability measure p0
and set n = 0.

Cn: Copy a portion of M best points of Pn directly into the new population.
Here, the best points means the points at which the function f has its lowest
values and M is an integer from the set {0, 1, 2, · · · , N − 1}.

Sn: Select a new point at random according to the probability measure pn+1 =
π(Pn) and include it to the new population when fulfilling the condition C.
Repeat this procedure until the new population is complete.

Mn: With the probabilitymn+1 replace a randomly chosen point by its mutation.

R: Set n = n+ 1 and go back to Cn.

Mutation of a given point is a point in D generated according to the specified rules.
Algorithms using only steps I, Cn, Sn, R we will call CRS algorithms (Controlled
Random Search). In other words, CRS is an evolutionary algorithm, for which all
mn are equal to zero.

1.2. Convergence of an algorithm. By convergence of an algorithm we mean the
convergence with probability 1, i.e. an algorithm is convergent if for any measurable
function f

P ( lim
n→∞

min{f(x); x ∈ Pn} = m) = 1.

2. Convergence of CRS algorithm

2.1. General conditions for the convergence of CRS algorithm.
Definition. We will say that an CRS algorithm saves the best point if

• the best point in the old population is copied into the new population directly
at step Cn, i.e. M > 0.

• if a point selected at step Sn has lower f value than any point in the old
population then it is included into the new population by rule C.

The following theorem provides the necessary and sufficient condition for the conver-
gence of an CRS algorithm and it is similar to Global Search Convergence Theorem
by Solis and Wets in [5].

Theorem 1. Suppose that an CRS algorithm saves the best point. Then it is con-
vergent if and only if for each set S of positive Lebesgue measure, we have

(1) Π∞
n=1 (1− pn(S)) = 0.

Proof: First suppose that the equation (1) holds. The infinite product on the left
side expresses the probability of repeatedly missing the set S when selecting new
points of population. Let f be a measurable function and denote by m its essential
minimum. Choose ε > 0. Let us consider the probability that a point y in the set
Fε = f−1 (−∞,m+ ε) of a positive Lebesgue measure (by definition of essential
minimum) will be selected at latest at the step Sn. This probability is greater than
or equal to 1 − Πn

i=1 (1− pi(Fε))
N−M . According to the assumption of Theorem 1

point y can be removed from the population only if a better point will later be
selected. Denote by xn the best point in population Pn. Then, by equation (1)

lim
n→∞

P (xn ∈ Fε) ≥ 1−Π∞
n=1 (1− pn(S))

N−M =

= 1− (Π∞
n=1 (1− pn(S)))

N−M = 1
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and, as ε > 0 was arbitrary, the algorithm is convergent.
Now suppose that the equation (1) does not hold for some set S of positive Lebesgue
measure. Define the function f by

f(x) =

{
0, x ∈ S
1, x ∈ D − S.

Then f is a measurable function and the algorithm does not converge to the essential
minimum of f .

2.2. Necessary condition for the convergence of CRS. In the case whenM =
N − 1 and the rule C is as follows

If f(yn+1) < max{f(x); x ∈ Pn} = f(xi) replace xi by yn+1 in Pn

to produce Pn+1, otherwise set Pn+1 = Pn,
where a new trial point yn+1 is generated from Pn by a heuristic,

the following theorem provides the necessary condition for the convergence of CRS.

Theorem 2. If an algorithm is convergent then for any collection {U1, U2, · · · , UN}
of open subsets of D and for every measurable set S ⊂ D of positive Lebesgue mea-
sure there is a selection P = {x1 ∈ U1, x2 ∈ U2, · · ·xN ∈ UN} such that π(P)(S) > 0.

Proof: Suppose the contrary and, without loss of generality, let
(⋃N

i=1 Ui

)
∩S = ∅.

Consider the measurable function

f(x) =




−1, x ∈ S

0, x ∈
⋃N

i=1 Ui

1, x ∈ D −
(
S
⋃(⋃N

i=1 Ui

))
As p0 is positive on open sets, the probability α of the choice P0 = {x1 ∈ U1, x2 ∈
U2, · · ·xN ∈ UN} is positive. For such a choice we have Pn = P0 for all integers n
and the algorithm will never reach the essential minimum in S. Thus

P ( lim
n→∞

min{f(x); x ∈ Pn} = m) < 1− α

and the algorithm does not converge with probability 1.

2.3. Modification of a nonconvergent algorithm. The following theorem pro-
vides a simple way how to modify an arbitrary CRS algorithm to a convergent one.

Theorem 3. Let two algorithms A1 and A2 work with the same size of population
and let they use the mappings π1 and π2, respectively, to determine the corres-
ponding probability measures. Further, let for every S ⊂ D of positive Lebesgue
measure there exists a positive constant δS such that π1(P)(S) ≥ δS holds for all
P ∈ DN . Finally, let

∑∞
n=1 cn be an arbitrary divergent series of real numbers from

the interval 〈0, 1〉. Then the algorithm A using the mapping

π = cnπ1 + (1− cn)π2

is convergent.

Remark 1. It is evident that the algorithm A1 itself is convergent. (If cn = 1 for all
n then A is identical with A1.)

Remark 2. The expression cnπ1+(1−cn)π2 should be interpreted in the way that the
new probability measure pn+1 is generated with the probability cn by the function
π1 and with the probability (1− cn) by the function π2.

In the proof of Theorem 3 the following simple Lemma is used.
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Lemma 1. Let αn ∈ 〈0, 1〉 for all integers n and let the infinite series
∑∞

n=1 αn be
divergent. Then

∏∞
n=1(1− αn) = 0.

Proof of Lemma 1: Note that the condition
∏∞

n=1(1− αn) = 0 is equivalent to the
condition

∏∞
n=1

1
(1−αn)

= ∞. An easy calculation

∞∏
n=1

1
(1− αn)

=
∞∏

n=1

( ∞∑
k=0

αk
n

)
> 1 +

∞∑
n=1

αn = ∞

completes the proof.

Proof of Theorem 3: Let S ⊂ D be of positive Lebesgue measure. According to the
definition of the algorithm A and the properties of π1

αn = π(Pn)(S) ≥ cnδS

holds. The series
∑∞

n=1 αn is divergent and, by Lemma 1,
∏∞

n=1(1 − αn) = 0. An
application of Theorem 1 completes the proof.

3. Convergence of evolutionary algorithms

3.1. Conditions for the convergence of evolutionary algorithms. The in-
troduction of mutation into an algorithm can influence its convergence in both the
positive and the negative direction. It may adapt the nonconvergent CRS algorithm
to the convergent evolutionary algorithm and vice versa.

The positive role of mutation may be described as follows. Suppose that the
corresponding CRS algorithm is not convergent and that the sequence (of best points
of populations) generated is far from the essential minimum. Since the new point
created by mutation need not depend on the history of populations, there can be a
positive probability that its value belongs to the small neighbourhood of the essential
minimum. Of course, it depends on the way how the mutation does work.

Now suppose that the value of the best point of population is close to the essential
minimum. There is a positive probability that the best point will be replaced via
mutation by much worse point. Thus it is possible that the mutation can break
the convergence of corresponding CRS algorithm. The following definition can be
motivated by the above discussion.
Definition. We will say that the mutation excludes the best point if the best point
of population must not be replaced by its mutation.

Note that the condition of exclusion of the best point is not too restrictive in the
case when the size of population is relatively high. Now we can state the sufficient
condition for the convergence of evolutionary algorithms.

Theorem 4. Let for each set S ∈ D of positive Lebesgue measure, the probability
that the new point created by mutation belongs to S be positive. Further suppose
that the mutation excludes the best point and that the series

∑∞
n=1mn is divergent.

Then the evolutionary algorithm is convergent provided the corresponding CRS
algorithm saves the best point.

Proof: Let ε > 0 and Fε = f−1 (−∞,m+ ε). It suffices to show that

lim
k→∞

P (xk ∈ Fε) = 1.

Denote by s the positive probability that the new point created by mutation belongs
to Fε. Then the probability that a point from Fε is included to the population Pn

via mutation is equal to s mn and the probability that a point from Fε will be
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included to the population Pn either via mutation or via selection at step [Sn] is
greater than or equal to s mn. Now, because of saving the best point and excluding
it from mutation, we have

P (xk ∈ Fε) ≥ 1−Πk
n=1 (1− s mn) .

Lemma 1 and the Theorem 1 show that the algorithm is convergent.

3.2. Examples. The assumptions of Theorem 4 provide only a sufficient condition
for the convergence of evolutionary algorithms. Thus, in connection with this the-
orem, some natural questions arise. We will touch two of them here.

Question 1. What can be said about the convergence, when the assumption of exc-
luding the best point is removed in Theorem 2?

Question 2. What can be said about the convergence, when the positive probability
of selection of a mutant is restricted only to a part of the domain?

We conjecture that in no one of the above questions the positive answer about the
convergence can be stated. Let us give a short informal explanation of the reasons
why.

Concerning Question 1: For a general evolutionary algorithm, the probability of
creation a new point in a sufficiently small neighbourhood of global minimum can be
smaller than the probability of its removing from the population via mutation when
the point is not protected. We illustrate this possibility by the following example.

Let a ∈ (0, 1), ε ∈ (0, 1) and let φa,ε be a measurable function defined in the
interval 〈0,K 〉 such that φa,ε(0) = 0, φa,ε(1) = 1, φa,ε(K) = ε, let φa,ε be increasing
in the interval (0, a) and φa,ε decreasing in the interval (a,K). Further, let D ⊂
{X ∈ Rd; |X | ≤ K } and fa,ε(X) = φa,ε(|X |) for all X ∈ D. Let d = 2, N =
10, M = 5, D = {[x, y];

√
x2 + y2 ≤ 100}, mn = 0.1, for n = 1, 2, . . . and

consider the function fa,ε. For simplicity suppose that all new points and mutants
are chosen by the uniform probability distribution. Then the probability that a
point in a sufficiently small neighbourhood of the global minimum will appear when
forming new population is less than 1−

[
1− πa2/

(
π1002

)]N−M
= 1−(1−a210−4)5.

On the other hand, the probability that such a point will be mutated to a point
outside the neighbourhood {[x, y];

√
x2 + y2 < a} of the global minimum is equal to

mn.
1
N

[
1− πa2/

(
π1002

)]
= 1

100 (1−a210−4). One can show that for sufficiently small
values of a, the probability of disappearance of ”good” points is greater than the
probability of their appearance. Consequently the algorithm can not be convergent.

Concerning Question 2: Consider the same function fa,ε as in the previous exam-
ple and suppose, for example, that mutation changes only a one randomly chosen
coordinate of a point. Thus the new mutant can belong to a sufficiently small neigh-
bourhood of global minimum only in the case when all but one coordinates of the
original point are very close to 0. On the other hand, the probability of existence
of such a point in population is not very high by the nature of the function f and
one can demonstrate the non-convergence of algorithm in a similar way as in the
previous example.

4. Experimental comparison of algorithms

4.1. Algorithms selected for tests. Modified controlled random search algorithm
(MCRS) is described in [2, 3, 8]. It starts from a population P of N uniformly
distributed points in D. A new trial point x is generated from a simplex S (d + 1
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points chosen at random from P ) by the relation

(2) x = g − Y (z − g),

where z is one (randomly taken) pole of the simplex S, g the centroid of the remaining
d poles of the simplex and Y a random multiplication factor. Several distributions of
Y were tested in [3] and it was found that good optimization results were obtained
with Y distributed uniformly in 〈0, α) with α ranging from 4 to 8. Point x may be
considered as resulting from the reflection of point z with respect to centroid g. Using
the reflection procedure, initial population P is iteratively contracted by replacing
the worst point with a better point (with respect to f -values). Input parameters of
MCRS are: population sizeN and parameter α of uniform distribution in randomized
reflection.

Differential evolution (DE) algorithms [7, 6] work with two populations: P (old) and
Q (new). Basically, for each vector (point) xi,P , i = 1, 2, . . . , N , of old population P
a mutant vector vi,Q is generated by adding the weighted difference of vectors from
P to another vector from P . In order to increase the diversity of the new vectors,
crossover is introduced. Therefore, trial vector ui,Q of new populationQ is created by
replacing some elements of vector xi,P by corresponding elements of mutant vector
vi,Q.

Two different strategies are used to generate mutant vectors [7, 6]:
• strategy using three randomly taken vectors of P (DERAND algorithm),
• strategy using the best vector and four randomly taken vectors of P (DEBEST
algorithm).

The strategies as well as the crossover procedure are described in [6] in detail. The
input parameters of DE algorithms are: population size N , dilatation coefficient of
vector difference F > 0 and parameter C influencing the number of elements L to be
exchanged by crossover, L being drawn from 〈1, d〉 with the probability P (L ≥ t) =
Ct−1 for t = 1, 2, . . . , d, C ∈ (0, 1). No proof of convergence of differential evolution
has been yet known [7].

Evolutionary search (ES) algorithms [2, 8] also work with two populations: old po-
pulation P and new population Q. The new population inherits the properties of
the old one in two ways: directly by surviving a number M of the best points (with
respect to f -values) and indirectly by applying the reflection to the old population.
Moreover, a point with new properties (even with a larger f -value) is allowed to
arise with a small probability p (mutation probability). The convergence of evolu-
tionary search under specific circumstances is proved in Theorem 4. An example of
the evolutionary search is the ES5 procedure.

procedure ES5
generate P (an old population of N points taken at random from D)
repeat

copy M best points of P into new population Q
find the worst point in P , xworst

if condition for the mutation is true
then mutate any point of P except the best point

repeat
repeat Reflection applied to a simplex from P
until the next trial point is better than xworst

insert the next trial point into Q
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until Q is completed to N points
replace P by Q

until stopping condition is true

The two kinds of mutation were used in the experiments:
• Uniform, when a mutant point is taken at random from the uniform distribution
on D =

∏d
i=1 < ai, bi >, ai < bi, i = 1, 2, . . . , d,

• Normal, when point x selected to mutation is changed into point y ∼ N
(
x, σ2

)
,

where σ2 = diag
(
σ1

2, σ2
2, . . . , σd

2
)
, σi = (bi − ai) /6.

In the next text the algorithms are called ES5UNI and ES5NOR, resp. Both the
ES5UNI and the ES5NOR fulfill the conditions of convergence given in Theorem 4.

The ES5 algorithm without any mutation (when condition for mutation never
occurs and M < N − 1) can be considered as a kind of modified controlled random
search working with two populations and we call it MCRS2.

When compared with MCRS algorithms, ES algorithms have two additional tu-
ning parameters: probability of mutation p and number M of the best points survi-
ving from old population P to new population Q or its upper limit.

Mixtures of the heuristics mentioned above were also tested in this research, namely:
• DExRF12, where in each generation the heuristic DERAND was followed by
2N reflections according to (2),

• DExRF11, where in each generation the heuristic DERAND was followed by
N reflections,

• DExRF21, where in each generation the heuristic DERAND was followed by
N/2 reflections,

• DExES5N, where the heuristic DERAND was combined with the heuristic
ES5NOR with one mutation in each generation.

4.2. Test functions. For the testing of the algorithms we used such problems where
at least one of the nonconvergent heuristics, i.e. MCRS or DE, sometimes failed in
searching for the global minimum. From this point of view the following functions
[7] were chosen:

Shekel’s Foxholes

f(x) =
(
0.002 +

24∑
i=0

1

i+ 1 +
∑2

j=1(xj − aij)6

)−1
where the elements of A matrix are defined as follows:

ai1 = −32,−16, 0, 16, 32 for 0, 1, 2, 3, 4, resp.,

ai1 = ai(mod 5),1 for i ≥ 5,

ai2 = −32,−16, 0, 16, 32 for i = 0, 5, 10, 15, 20, resp.,

ai2 = ai+k,2 for k = 1, 2, 3, 4.

The global minimum is x� = (−32,−32) and f(−32,−32) � 0.998004.

Corana’s parabola

f(x) =
4∑

i=1

{
0.15ai [zi − 0.05sgn(zi)]

2 if |xi − zi| < 0.05
aixi

2 otherwise

where zi = 0.2 sgn(xi)�|5xi|+ 0.49999� and a = (1, 1000, 10, 100).
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The global minimum is x� = (〈−0.05, 0.05〉, . . . , 〈−0.05, 0.05〉) and f(x�) = 0.

Griewangk’s function

f(x) =
1

4000

d∑
i=1

xi
2 −

d∏
i=1

cos

(
xi√
i

)
+ 1

The global minimum is x� = (0, 0, . . . , 0) and f(x�) = 0.

4.3. Experimental conditions. The stopping condition for all the tests were de-
fined as it follows. Suppose that f1, f2, . . . , fN is a nondecreasing sequence of the
function values in a given iteration of the algorithm. The optimization process was
stopped when f5 − f1 ≤ 10−7.

For each optimization task 100 independent runs were carried out. The common
tuning parameter α for MCRS and ES5 was adjusted to the same value, α = 8.
In each generation the additional tuning parameter M for ES5 algorithms was set
at random from 〈1, �N/2�〉, where �N/2� is the largest integer less than or equal
to N/2. Concerning DE algorithms the tunning parameters were set F = 0.9 and
C = 0.9.

Three basic characteristics of the algorithms were considered in the experiments:
• reliability R defined as (100 − percentage of failures), the failure being consi-
dered as the stopping at a local minimum;

• convergence rate measured by the average number of objective function evalua-
tions NE for stopping at global minimum;

• number of objective function evaluations NE1 needed for reaching a state very
close to the global minimum, specially when f(xbest)− f(xopt) < 1× 10−3.

4.4. Results for CRS. Using Theorem 2, it can be shown that the modified con-
trolled random search heuristic (MCRS) fails to be convergent. In agreement with
Theorem 3 we tested its modification based on a combination of the MCRS and the
simple random search with new trial points uniformly distributed on D, cn = c for
all integers n, c ∈ 〈0, 1〉. This combined algorithm was tested on well-known fifth De
Jong’s function (Shekel’s Foxholes), for which MCRS stopped at a local minimum
in about 60 % of runs [8]. The relative frequency of the simple random search is an
input parameter c of the algorithm. Value c = 0 reduces the algorithm to MCRS,
value c = 1 gives the simple random search. The switching between the MCRS and
the simple random search is made at random in each step with the probability c
for the simple random search and (1 − c) for the MCRS. Searching space D was
constrained to

∏2
j=1[−40, 60] in these experiments.

From Fig. 1 it is evident that the reliability of the combined MCRS increases
almost linearly with increasing c. Fig. 2 shows the dependence of number of the
function evaluations (NE) on the reliability for the combined MCRS (Fig. 1 – left)
and the original (nonconvergent) MCRS ( Fig. 1 – right). In both cases the growth
of NE is approximately exponential but in the case of the nonconvergent MCRS the
growth of NE is much slower. Moreover, the original nonconvergent MCRS enables
to achieve the same level of reliability even at smaller values of NE by increasing
the population size. By increasing the population size from 10 to 35 the reliability
of 100 per cent was achieved, see Fig. 2 – right .
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4.5. Results for evolutionary algorithms. Population size N and the size of
searching space D =

∏d
i=1 < ai, bi >, ai < bi, i = 1, 2, . . . , d were set to be the

same for all the algorithms depending on the tested function, see Table 1.
The experimental results are summarized in Tables 2, 3 and 4. As we can see in the e
2, any general conclusion cannot be made on nonconvergent heuristics. We obtained
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Figure 1. Empirical dependence of reliability on c
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Figure 2. Empirical dependence of log NE on reliability
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Table 1. Population size and searching space

Function d N 〈ai, bi〉
Shekel 2 10 〈−65.536, 65.536〉
Corana 4 20 〈−1000, 1000〉
Griewangk 10 100 〈−400, 400〉

Table 2. Nonconvergent simple heuristics

Corana Shekel Griewangk
Algorithm R NE R NE R NE
DEBEST 97 6855 69 845 100 327810
DERAND 96 4503 37 700 100 199015
MCRS 100 6577 39 2136 23 63256
MCRS2 97 11124 71 2921 100 219342

very different values of R and NE for the three functions under considerations.
For Corana’s function the MCRS was found to be the only reliable optimization
algorithm. On the contrary, the MCRS is the only unreliable algorithm for the
optimization of Griewangk’s function but it is significantly faster than the others. In
the case of Shekel’s function all the heuristics are not reliable, both DERAND and
MCRS being heavily unreliable.

Table 3. ES5 – dependence R and NE on probability of mutation
p for Shekel’s function

Uniform Normal
p R NE1 NE R NE1 NE
0.2 71 2157 3072 72 2272 3173
0.4 69 2269 3189 69 2272 3020
0.6 67 2221 3116 80 2272 3240
0.8 75 2380 3272 79 2417 3395
1.0 82 2273 3252 71 2471 3609

As regards the ES5 algorithm, we can see in Table 3 that for Shekel’s function
the reliability increases very slowly with increasing probability of mutation and NE
values are also slightly increasing. The overall results are not significantly better
than the results of simple nonconvergent heuristics (compare with Table 2). For
Griewangk’s function the full reliability was achieved by the MCRS2 algorithm and
additional mutation in ES5 only slightly increased NE values, i.e. it did not bring
any improvement of the results.
The results of the mixtures of different heuristics are summarized in Table 4. Inte-
resting results were achieved by using the DExES5N algorithm in the case of Grie-
wangk’s function. The DExES5N is the combination of DERAND and ES5NOR
with one mutated point in each generation. The results are shown in Fig. 3. We can
see that the DExES5N is much better with respect to NE than the both parental
algorithms.
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Table 4. Mixtures

Corana Shekel Griewangk
Algorithm R NE R NE R NE
DExRF21 98 3722 51 776 100 162098
DExRF11 93 3380 58 815 100 180115
DExRF12 91 3240 58 949 96 169796
DExES5N 95 9044 80 2467 100 127476

DERAND ES5NOR DExES5N

100000

150000

200000

250000

N
E

Figure 3. Griewangk’s function - comparison of NE for a mixture
of DERAND and ES5NOR

5. Conclusions

The proof of convergence for a stochastic algorithm may bring some useful ideas
for its implementation. However, the proof of convergence with probability 1 is very
weak result from practical point of view. A nonconvergent heuristic can give more
reliable results than a related theoretically convergent algorithm even at a smaller
number of objective function evaluations. There is no guarantee that the evolutionary
algorithm with proved convergence is more reliable than a nonconvergent heuristic
in solving a concrete problem of the global optimization of a multimodal function.

Sometimes a mixture of different heuristics can bring a substantial decrease in
the number of objective function evaluations and/or an increase in reliability, but
any commonly used guideline for such a mixing is not yet available.
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