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SAMPLE PATH BEHAVIOUR OF WIENER
AND CAUCHY PROCESSES

Stanislav KEPRTA1

MFF UK, KPMS

Abstrakt. Článek popisuje chováńı trajektoríı Wienerova a Cauchyho pro-
cesu pomoćı integrálńıch test̊u.���������	��
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1. Definitions and notations

Let {V (t); t ≥ 0} be a stochastic process. We define the following classes of
functions (cf. Révész (1990), pp. 33–34).
Definition 1.1. The function ψ belongs to the upper-upper class of {V (t);
t ≥ 0} (ψ(t) ∈ UUC(V (t))) if for almost all ω ∈ Ω there exists a t0 = t0(ω) >
0 such that V (t) < ψ(t) for all t > t0.

Definition 1.2. The function ψ belongs to the upper-lower class of {V (t);
t ≥ 0} (ψ(t) ∈ ULC(V (t))) if for almost all ω ∈ Ω there exists a sequence of
positive numbers 0 < t1 = t1(ω) < t2 = t2(ω) < · · · with tn → ∞ such that
V (ti) ≥ ψ(ti), i = 1, 2, . . . .

Definition 1.3. The function ψ belongs to the lower-upper class of {V (t);
t ≥ 0} (ψ(t) ∈ LUC(V (t))) if for almost all ω ∈ Ω there exists a sequence of
positive numbers 0 < t1 = t1(ω) < t2 = t2(ω) < · · · with tn → ∞ such that
V (ti) ≤ ψ(ti), i = 1, 2, . . . .

Definition 1.4. The function ψ belongs to the lower-lower class of {V (t);
t ≥ 0} (ψ(t) ∈ LLC(V (t))) if for almost all ω ∈ Ω there exists a t0 = t0(ω) > 0
such that V (t) > ψ(t) for all t > t0.

Assume, for a moment, that a process {V (t); t ≥ 0} and functions ψ(t)
and ξ(t) are positive. If

lim sup
t→∞

V (t)

ψ(t)
= 1 a.s.,

then for every ε > 0, (1+ε)ψ(t) ∈ UUC
(
V (t)

)
and (1−ε)ψ(t) ∈ ULC

(
V (t)

)
.

Similarly, if

lim inf
t→∞

V (t)

ξ(t)
= 1 a.s.,

then for every ε > 0, (1 + ε)ξ(t) ∈ LUC
(
V (t)

)
and (1− ε)ξ(t) ∈ LLC

(
V (t)

)
.

But we do not know whether ψ(t) belongs to UUC
(
V (t)

)
or to ULC

(
V (t)

)
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and whether ξ(t) belongs to LLC
(
V (t)

)
or to LUC

(
V (t)

)
. Therefore, the

division of functions into UUC and ULC classes gives a stronger result than
a lim sup result, and the division of functions into LLC and LUC classes gives
a stronger result than a lim inf result.

Define the following class of functions,

Ψ = {ψ; ψ is a positive function defined in a neighbourhood of infinity

such that t1/α/ψ(t) or t1/αψ(t) is nondecreasing(1.1)

in a neighborhood of infinity for some α > 0}.
Define the following integrals,

Id(ψ, c) =

∫ ∞ max
(
1, ψd(t)

)

t
exp
(
−cψ2(t)

)
dt, c > 0, d = 0, 1, . . . ,(1.2)

and

Jd(ψ) =

∫ ∞ 1

tψd(t)
dt, d = 1, 2, . . . .(1.3)

We will write Id(ψ) instead of Id(ψ, 1). Define

(1.4) c∗(ψ) = inf {c > 0; Id(ψ, c) <∞} ,
and notice that for ψ ∈ Ψ the definition of c∗(ψ) does not depend on d.

2. Limsup and liminf behaviour of the Wiener process

Let {W (t); t ≥ 0} be a standard one-dimensional Brownian motion. For
t ≥ 0 define

M+(t) = sup
0≤s≤t

W (s), M−(t) = − inf
0≤s≤t

W (s),

M(t) = sup
0≤s≤t

|W (s)| = max [M+(t),M−(t)].

In Keprta (1997) we find the following improvement of the Kolmogorov’s
classical integral test (to keep the things simple we state the theorem only for
one-dimensional Brownian motion, for r-dimensional case see Keprta (1997)).
Theorem 2.1. Let ψ ∈ Ψ. Then

(2.1) P
{
M(t) ≥

√
2 t1/2ψ(t) i.o. as t→∞

}
=

{
0

1
as I1(ψ)

{
<∞
=∞.

Corollary 2.1.

lim sup
t→∞

M(t)

t1/2ψ(t)
=
(
2c∗(ψ)

)1/2
a.s.

Remark 2.1. In the above theorem and corollary M(t) can be replaced by
W (t), −W (t), |W (t)|, M+(t), or M−(t).
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Example 2.1. The classical example is this. Let ψ2(t) = log2 t + 3
2 log3 t +

log4 t + · · · + logp−1 t + (1 + δ) logp t, where log2 t = log(3 ∨ log t), logk t =
logk−1(3 ∨ log t), k = 3, . . . . Then for p ≥ 4,

ψ(t) ∈
{

UUC
(
(2t)−1/2M(t)

)

ULC
(
(2t)−1/2M(t)

) acc. as

{
δ > 0

δ ≤ 0.

The Kolmogorov’s integral test assumes that ψ is nondecreasing. The
assumption that ψ is nondecreasing implies that ψ is close to (log log t)1/2,
in particular, if ψ(tk) < (1 − ε)(log log tk)1/2 for a sequence tk ↗ ∞ and
some ε, 0 < ε < 1, then the probability in (2.1) is one. However, under our
monotonicity assumptions we are able to construct a functions ψ such that

lim inf
t→∞

ψ(t)

(log log t)1/2
= 0,

but I1(ψ) <∞ and
√

2 t1/2ψ(t) ∈ UUC(M(t)).
Let f be a positive, nondecreasing function from [3,∞) to (0,∞), such

that f(t) → ∞ as t → ∞, and f(t) < (2 log log t)1/2 for all t ≥ 3. Let
3 ≤ T1 < T ′1 < T ′′1 < T2 < T ′2 < T ′′2 < · · · and ψ be defined in the following
way,

ψ(t) =





(2 log log t)1/2, Tn < t ≤ T ′n,
ψ(T ′n)T

′1/2
n t−1/2, T ′n < t ≤ T ′′n ,

f(t), T ′′n < t ≤ Tn+1,

where

T ′′n = inf{t > T ′n; f(t) ≥ ψ(T ′n)T ′1/2n t−1/2}.
Then I1(ψ) <∞ if and only if

∑

n

∫ Tn+1

T ′′n

ψ(t)

t
exp
(
−ψ2(t)

)
dt =

∑

n

∫ Tn+1

T ′′n

f(t)

t
exp
(
−f2(t)

)
dt <∞.

Hence, f can go to infinity arbitrarily slowly, and convergence or diver-
gence of the integral is decided on the intervals where ψ is equal to f .

Another interesting example is this. Put ψ(t) = (2 log log t)1/2 for t 6∈ N
and ψ(t) = 2 for t ∈ N. Function ψ is such that I1(ψ) <∞, however, since

ψ(t) 9∞ as t→∞,
√

2 t1/2ψ(t) ∈ ULC
(
M(t)

)
. In the same spirit we could

define ψ in a continuous way, but it is obvious that t1/αψ(t) and t1/α/ψ(t)
are not nondecreasing for any α > 0.

In the same way Keprta (1997) generalizes Chung’s and Hirsch’s integral
tests (again, we limit our presentation to one-dimensional case).
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Theorem 2.2. Let ψ ∈ Ψ. Then
(2.2)

P

{
M(t) ≤ π√

8
· t

1/2

ψ(t)
i.o. as t→∞

}
=

{
0

1
acc. as I2(ψ)

{
<∞
=∞.

Corollary 2.2.

lim inf
t→∞

M(t)

t1/2
ψ(t) =

(
π2

8c∗(ψ)

)1/2
a.s.

Theorem 2.3. Let ψ ∈ Ψ. Then

(2.3) P

{
M+(t) ≤ t1/2

ψ(t)
i.o. as t→∞

}
=

{
0

1
acc. as J1(ψ)

{
<∞
=∞,

or, equivalently,

lim inf
t→∞

M+(t)

t1/2
ψ(t) =

{
∞
0

a.s. acc. as J1(ψ)

{
<∞
=∞.

Remark 2.2. An important property of the Id and Jd integrals is that if
β > 0 and ψ ∈ Ψ then there exist ψ1, ψ2 ∈ Ψ such that ψ1 ≤ ψ ≤ ψ2,
both t1/β/ψi(t) and t1/βψi(t) are nondecreasing, i = 1, 2, and Id(ψ), Id(ψ1),
Id(ψ2) (Jd(ψ), Jd(ψ1), Jd(ψ2), respectively) are all convergent or all diver-
gent. Therefore, without loss of generality, we can prove the above theorems
only for ψ with both t1/βψ(t) and t1/β/ψ(t) nondecreasing for, say, β = 2,
and the theorems remain true for all ψ ∈ Ψ.

Define the first passage time process

S+(u, ω) = inf{t ≥ 0; W (t, ω) = u} = inf{t ≥ 0; M+(t, ω) = u}.
{S+(u); u ≥ 0} is an inverse of {M+(t); t ≥ 0}. If f is a positive increasing
function and g is its inverse then f ∈ UUC(M+) if and only if g ∈ LLC(S+)
and f ∈ LLC(M+) if and only if g ∈ UUC(S+). Since {S+(u); u ≥ 0} is a
nondecreasing process with stationary, independent increments, it is easier
to work with {S+(u); u ≥ 0} than to prove Theorems 2.1 and 2.3 directly,
see Keprta (1997) for details.

3. Cauchy process

We will present theorems for the Cauchy process analogous to those men-
tioned above for the Brownian motion.
{C(t); t ≥ 0} is a (symmetric one-dimensional) Cauchy process defined

on a probability space (Ω,F ,P) if
i) C : [0,∞)× Ω→ R;
ii) C(0, ω) = 0 for each ω;
iii) C(t, ·) is F-measurable for each t;
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iv) the increments are stationary, independent, C(t)
D
= tC(1) and the

distribution of C(1) is given by

P{C(1) ≤ x} =
1

2
+

1

π
arctanx.

v) C(·, ω) is right-continuous and has finite left-hand side limits for al-
most all ω.

The Cauchy process can be represented by two independent Brownian
motions. Take {W (1)(t); t ≥ 0} and {W (2)(t); t ≥ 0} two independent
Brownian motions and let {S+(u); u ≥ 0} be the first passage time process
corresponding to W (1)(t). Then C(t) = W (2)

(
S+(t)

)
, t ≥ 0, is a standard

Cauchy process. The Cauchy process is neighbourhood recurrent but not
point recurrent.

Define

C+(t) = sup
0≤s≤t

C(s), t ≥ 0, C−(t) = − inf
0≤s≤t

C(s), t ≥ 0,

C∗(t) = sup
0≤s≤t

|C(s)| = max [C+(t),C−(t)], t ≥ 0.

Since {C(t); t ≥ 0} D= {−C(t); t ≥ 0}, also {C+(t); t ≥ 0} D= {C−(t); t ≥
0}. We will study lim sup and lim inf behaviour of these processes as t→∞.

4. Limsup behaviour of C

Bertoin (1996) Theorem 5, p. 222, gives a general theorem for stable pro-
cesses (see also Fristedt (1974)). We slightly enlarge the class of the weight
functions and state the theorem for the Cauchy process specifically.
Theorem 4.1. Let ψ ∈ Ψ. Then

(4.1) P {C(t) ≥ tψ(t) i.o. as t→∞} =

{
0

1
acc. as J1(ψ)

{
<∞
=∞.

Corollary 4.1.

lim sup
t→∞

C(t)

tψ(t)
=

{
0

∞ a.s. acc. as J1(ψ)

{
<∞
=∞.

Remark 4.1. In the above theorem and corollary C(t) can be replaced by
−C(t), |C(t)|, C+(t), C−(t), or C∗(t).

The following generalization of the Borel–Cantelli lemma will be used in
our proofs.
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Lemma 4.1. Let Bk, k = 1, . . . , be arbitrary events. If
∑

k P(Bk) < ∞,
then P(Bk i.o.) = 0. If

∑
k P(Bk) =∞ and

lim inf
n→∞

n∑
k=1

n∑
l=1

P(Bk ∩ Bl)
(

n∑
k=1

P(Bk)

)2 ≤ C (C ≥ 1),

then P(Bk i.o.) ≥ 1/C.

Proof of Theorem 4.1. Without loss of generality we may assume that tψ(t)
is nondecreasing. Assume that J1(ψ) < ∞. Then ψ(t) → ∞ as t → ∞.
Denote

Ak = {C+(t) ≥ tψ(t) for some t ∈ [2k, 2k+1)}.
Since both C+(t) and tψ(t) are nondecreasing, we have

P(Ak) ≤ P{C+(2k+1) ≥ 2kψ(2k)} = P{C+(1) ≥ 1
2ψ(2k)} ≈ 1

ψ(2k)
,

where a(x) ≈ b(x) as x → L means that c ≤ lim infx→L a(x)/b(x) ≤
lim supx→L a(x)/b(x) ≤ c′ for some positive constants c and c′. The last ap-
proximation follows from P{C+(1) ≥ x} ≈ P{C(1) ≥ x} ≈ 1/x for x → ∞.
It is easy to show that for λ > 1, J1(ψ) <∞ if and only if

∑
k 1/ψ(λk) <∞.

Therefore
∑

k P(Ak) < ∞ and the Borel–Cantelli lemma finishes the proof
of the convergent part.

Now assume that J1(ψ) = ∞. The case ψ(t) 9 ∞ as t → ∞ is obvious,
hence assume ψ(t)→∞ as t→∞. Define for a > 0

Ak = {C(2k+1)− C(2k) ≥ 2k+1ψ(2k+1) + a2k, |C(2k)| ≤ a2k}.
Obviously Ak implies C(2k+1) ≥ 2k+1ψ(2k+1). Using the independence and
stationarity of the increments and the scaling property, we have

P(Ak) = P{|C(1)| ≤ a}P{C(1) > 2ψ(2k+1) + a}.
Therefore, P(Ak) ≈ 1/ψ(2k+1) and

∑
k P(Ak) =∞. Moreover, for k 6= l,

P(Ak ∩ Al) ≤ P(Ak) P(Al)/
(
P{|C(1)| ≤ a}

)2
.

The Borel–Cantelli lemma and the zero-one law gives P(Ak i.o.) = 1. This
finishes the proof of the theorem. �

5. Liminf behaviour of |C|
Now we will slightly generalize Theorem 11.5 of Fristedt (1974) and state it
as a special case for the Cauchy process. This is similar to Spitzer’s theorem
for planar Brownian motion (see Spitzer (1958)).
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Theorem 5.1. Let ψ ◦ exp ∈ Ψ. Then

(5.1) lim inf
t→∞

|C(t)| exp
(
ψ(t) log t

)
=

{
∞
0

a.s. acc. as J0(ψ)

{
<∞
=∞,

where

J0(ψ) =

∫ ∞ 1

tψ(t) log t
dt.

Proof. Take λ > 1 and put

Ak = {|C(t)| ≤ h(t) for some t ∈ [λk , λk+1)},
where h(t) = exp

(
−ψ(t) log t

)
. Then

∑
k P(Ak) converges or diverges ac-

cording as J0(ψ) converges or diverges. For l > k + 1 it is possible to show
that

P(Ak ∩ Al) ≤ C P(Ak) P(Al),

for some positive constant C. An application of the Borel–Cantelli lemma
finishes the proof. �

6. Liminf behaviour of C+

We will prove the following theorem.
Theorem 6.1. Let ψ ∈ Ψ. Then

(6.1) P

{
C+(t) ≤ t

ψ2(t)
i.o. as t→∞

}
=

{
0

1
acc. as J1(ψ)

{
<∞
=∞,

or, equivalently,

lim inf
t→∞

C+(t)

t
ψ2(t) =

{
∞
0

a.s. acc. as J1(ψ)

{
<∞
=∞.

Put

T+(u) = inf{t ≥ 0; C+(t) ≥ u}.
Then

{C+(t) ≤ u} = {T+(u) ≥ t}
and {T+(u); u ≥ 0} has similar properties as {S+(u); u ≥ 0}, namely it
has nondecreasing paths and has stationary, independent increments, hence,
it is a subordinator (see Karatzas and Shreve (1988) for basic properties of
subordinators and Bertoin (1996) for integral tests for subordinators). Since

C+(t)/t
D
= C+(1) for each t > 0, we have T+(u)/u

D
= T+(1) for each u > 0.

Since

P{C+(1) ≤ x} ≈ √x, x→ 0+,
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(see Darling (1956)), we have

P{T+(1) ≥ 1

x
} ≈ √x, x→ 0 + .

Put

u = u(t) = t/ψ2(t)

and assume that u(t) is strictly increasing. Then its inverse has a form

t = t(u) = uξ2(u),

where ξ(u) = ψ(t). It is not difficult to show that

J1(ψ) <∞ ⇐⇒ J1(ξ) <∞.
Since in Theorem 6.1 it is possible to assume without loss of generality that
t/ψ2(t) is strictly increasing, Theorem 6.1 is equivalent to

Theorem 6.2. Let ξ ∈ Ψ. Then

(6.2) P
{

T+(u) ≥ uξ2(u) i.o. as u→∞
}

=

{
0

1
acc. as J1(ξ)

{
<∞
=∞,

or, equivalently,

lim sup
u→∞

T+(u)

uξ2(u)
=

{
0

∞ a.s. acc. as J1(ξ)

{
<∞
=∞.

Proof. We may assume without loss of generality that uξ2(u) is strictly in-
creasing. Assume that J1(ξ) < ∞. This implies that ξ(u) → ∞ as u → ∞.
Denote

Ak = {T+(u) ≥ uξ2(u) for some u ∈ [2k, 2k+1)}.
Since both T+(u) and uξ2(u) are nondecreasing, we have

P(Ak) ≤ P{T+(2k+1) ≥ 2kξ2(2k)} = P{T+(1) ≥ 1
2ξ

2(2k)} ≈ 1

ξ(2k)
.

It is easy to show that for λ > 1, J1(ξ) < ∞ ⇐⇒ ∑
k 1/ξ(λk) < ∞.

Therefore
∑

k P(Ak) <∞ and by the Borel–Cantelli lemma P(Ak i.o.) = 0.
Now assume that J1(ξ) = ∞. The case ξ(u) 9 ∞ as u → ∞ is obvious,

hence assume ξ(u)→∞ as u→∞. Define

Ak = {T+(2k) ≥ 2kξ2(2k)}

and

Bk = {T+(2k)− T+(2k−1) ≥ 2kξ2(2k)}.
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Obviously Bk ⊂ Ak. To show that P(Ak i.o.) = 1, it is sufficient to show
that P(Bk i.o.) = 1. Since Bk, k = 1, 2 . . . , are independent, it is enough to

show that
∑
k P(Bk) =∞. Since T+(2k)− T+(2k−1)

D
= T+(2k−1), we have

P(Bk) = P{T+(2k−1) ≥ 2kξ2(2k)} = P{T+(1) ≥ 2ξ2(2k)} ≈ 1

ξ(2k)
,

the sum of which diverges. This finishes the proof of the theorem. �

7. Liminf behaviour of C∗

The following theorem characterizes the lower classes of {C∗(t); t ≥ 0}.
Theorem 7.1. Let ψ ∈ Ψ. Then
(7.1)

P

{
C∗(t) ≤ π

2λ1
· t

ψ2(t)
i.o. as t→∞

}
=

{
0

1
acc. as I2(ψ)

{
<∞
=∞,

where λ1
.
= 1.36 denotes the largest eigenvalue of the kernel

K(x, y) =
∞∑

m=1

sin(m arccosx) sin(m arccosy)

m
.

Remark 7.1. A function f and a number λ is an eigenfunction and an
eigenvalue of a kernel K if Kf = λf , where the operator K is defined as

Kf =
∫ 1

−1
K(x, y)f(x) dx.

Corollary 7.1.

lim inf
t→∞

C∗(t)
t

ψ2(t) =
π

2λ1c∗(ψ)
a.s.

Proof. We may assume without loss of generality that tψ2(t) and t/ψ2(t) are
strictly increasing, and that 2 ≤ ψ2(t) ≤ 2 log log t for all t. Let t0 be an
initial value and define

tk+1 = tk

(
1 +

1

ψ2
k − 1

)
= tk

ψ2
k

ψ2
k − 1

,

where ψk = ψ(tk). Then I2(ψ) <∞ if and only if
∑

k exp(−ψ2
k) <∞.

Let λ1 ≥ λ2 ≥ · · · denote the eigenvalues and gj , j = 1, 2, . . . , the cor-
responding eigenfunctions of the kernel K(x, y). Then (see Kac and Pollard
(1950))

(7.2) Gr(x) = P

{
C∗(t)
t

< x

}
=
∞∑

j=1

exp

(
− π

2xλj

)
gj(0)

∫ 1

−1

gj(y) dy.

Since λ1 > λ2, the first term of the sum in (7.2) is dominant and we have

(7.3) Gr(x) ≈ exp

(
− π

2xλ1

)
for x→ 0 + .



112 Stanislav KEPRTA

Assume that I2(ψ) <∞. Then ψ(t)→∞ as t→∞. Denote

Ak =

{
C∗(t) ≤ π

2λ1
· t

ψ2(t)
for some t ∈ [tk, tk+1)

}
.

Since both C∗(t) and t/ψ2(t) are nondecreasing, we obtain

P(Ak) ≤ P

{
C∗(tk) ≤ π

2λ1
· tk+1

ψ2
k+1

}
= P

{
C∗(tk)

tk
≤ π

2λ1
· 1

ψ2
k+1

· tk+1

tk

}

≈ exp

(
−ψ2

k+1

tk
tk+1

)
= exp

(
−ψ

2
k+1(ψ2

k − 1)

ψ2
k

)

≤ exp

(
− (ψ2

k − 1)2

ψ2
k

)
≈ exp

(
−ψ2

k

)
,

(7.4)

which sums. Therefore, by the Borel–Cantelli lemma, P(Ak i.o.) = 0, which
proves the convergent part of the theorem.

Now assume that I2(ψ) = ∞. The case ψ(t) 9 ∞ as t → ∞ is obvious
and, therefore, assume that ψ(t) → ∞ as t → ∞. Define K = {k; ψ2

k >
ψ2
k−1 + 1

2} and its complement Kc = N−K. Now denote

Ak =

{
C∗(tk) ≤ π

2λ1
· tk
ψ2
k

}
,

and notice that

(7.5) P(Ak) ≈ exp
(
−ψ2

k

)
.

We will use the Borel–Cantelli lemma to show that Ak, k ∈ Kc, occur
infinitely often with probability one. I2(ψ) =∞ implies that

∑∞
k=1 P(Ak) =

∞. Moreover, it is possible to show that
∑
k∈Kc P(Ak) =∞.

Let k < l, k, l ∈ Kc. Now

P(Ak ∩ Al) ≤ P(Ak) P

{
C∗(tl − tk) ≤ π

2λ1
· tl
ψ2
l

}
,

and, by (7.3), we have

(7.6) P(Ak ∩ Al) ≤ C exp
(
−ψ2

k

)
exp

(
−ψ2

l

tl − tk
tl

)
,

for some positive constant C independent of k and l. For a fixed k,

P(Ak ∩ Al)
P(Ak) P(Al)

≤ C1

exp
(
−ψ2

k

)
exp

(
−ψ2

l

tl − tk
tl

)

exp
(
−ψ2

k

)
exp(−ψ2

l )

= C1 exp

(
ψ2
l

tk
tl

)
↘ C1,
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for some positive constant C1 as l →∞, since ψ2
l /tl ↘ 0 as l→∞.

Define l0 = l0(k) by

l0 = sup

{
l; l > k, ψ2

l

tk
tl
> 1

}
.

Then for l > l0,

P(Ak ∩ Al)
P(Ak) P(Al)

≤ C1e.

We want to show that there is a constant C2, independent of k, such that

(7.7)

l0∑

l=k+1
l∈Kc

P(Ak ∩Al)
P(Ak)

≤ C2.

It is possible to show that for l > k, l ∈ Kc,

P(Ak ∩Al)
P(Ak)

≤ C3 exp

(
−ψ2

l

tl − tk
tl

)

≤ K
∫ zl−1

zl

1

z
ezξ2(z) exp

(
−ξ2(z)

)
dz,

(7.8)

where K is a universal constant and z = z(t) = tkψ
2(t)/t, zl = tkψ

2
l /tl, and

ξ(z) = ψ(t). Notice that tψ2(t) = tkξ
4(z)/z is nondecreasing as t increases,

ie., as z decreases.
Observe that ξ2(zk) = ψ2

k and zl0 > 1. From (7.8) we have

l0∑

l=k+1
l∈Kc

P(Ak ∩ Al)
P(Ak)

≤ K
l0∑

l=k+1
l∈Kc

∫ zl−1

zl

1

z
ezξ2(z) exp

(
−ξ2(z)

)
dz

≤ K
∫ ψ2

k

1

1

z
ezξ2(z) exp

(
−ξ2(z)

)
dz

≤ K
∫ ψ2

k

1

1

z
ezψk

√
z exp

(
−ψk
√
z
)

dz

≤ 3K = C2,

where we replaced ξ2(z) by ψk
√
z, the smallest possible function satisfying

ξ2(ψ2
k) = ψ2

k and ξ2(z)/
√
z is nonincreasing, and, since xe−x is decreasing

for x > 1, made the integral as big as possible.
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Now it is easy to verify that

lim inf
N→∞

N∑

k=1
k∈Kc

N∑

l=1
l∈Kc

P(Ak ∩ Al)




N∑

k=1
k∈Kc

P(Ak)




2 ≤ C4 <∞

for some positive constant C4, which, by the Borel–Cantelli lemma and zero-
one law finishes the proof of the divergent part of the theorem. �
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[3] Csörgő, M., Shao, Q.-M., Szyszkowicz, B. (1991) A Note on Local and Global Func-
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