SOME MODIFICATIONS OF RECURSIVE TIME
SERIES METHODS

Tomas Cipra, Charles University of Prague

Recursive procedures used for smoothing, estimating and predicting time series are

_ very popular in the modern time series analysis due to their advantageous properties. The
contribution shows some possible modifications of such procedures that include (1) robust
recursive methods, (2) recursive methods in Ll-norm. (3) recursive methods with miss-
ing observations, (4) asymmetric recursive methods. Examples of the modified recursive

procedures concern Kalman filter, expouential smoothing and autoregressive processes.
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1. INTRODUCTION

Recursive methods in time series consist in adaptation of a previous estimate
by means of a correction term which depends both on the previous estimate and on
a new information (a new observation). They are used successfully for estimation,
smoothing and prediction in time series analysis due to their advantageous properties
(flexibility, numerical efficiency, memory saving and others).

Majority of recursive time series methods can be interpreted as special cases of

the Kalman filter for the dynamic linear model (or the state-space representation)
of the form

(1.1) z, = Fizi~ + wy )
(1.2) ye = Hize + vt
.where

(13) E‘LU; = 0, E'Ut = 0, E(w,wi) ES 6,;@:, E(‘U,'U;) = (Ssth, E(‘UJ;’U;) ={

and some initial conditions are fulfilled. The state equation (1.1) describes behavior
of an n-dimensional state vector z, in time while the observation equation (1.2)
describes relation of the unobservable state z; to an m-dimensional observation
vector y:.

The Kalman filter gives retursive formulas for construction of the linear mini-
mum variance estimator Z; of z; and its error covariance matrix P} = E(z;—2!)(z,~
Z;) at time ¢ using all previous information {yy,y1,---,¥¢}:

(1.4) #=8" + P H(HPTH + R (- HiET,
(1.5) P{ =P~ - P/T'H{(H.P{"'H+ R)"HP*,
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where

(1.6) g7 = Rt

(1.7) P =FPICIF 4+ Q,
are predictive values for time t at time ¢ — 1. In the standard normal case with
(1.8) wy ~ N(O, Q;) 3 Vg r~ N(O,R:)

the Kalman filter provides the minimum variance estimators: e.g. 1t holds £ =
E(z¢|yo,%1,--.,y:) in this case. '

It can be easily shown that the state estimator £{ can be obtained by solving
the optimization problem '

(1.9) 2} = argmin{(2{~! —z,)(PF~1)"1 (3!~ = 2o} + (ye ~ Heze) BTy — Hezy))

over z; € R", or equivalently

n m
(1.10) 2, = argmin{} (pic = auze) + Y (sje ~ bjez,)?),
i=1 =1
1 S =1
where p, = (P{~1)~33!-1 5, = R, *yrap = (P11, b, = R, *H, (e.g., pi; is the
i-th component of the vector pe and a;; is the i-th row of the matrix a).

From the point of view of practical applications some modifications of the clas-
sical recursive methods may be important. This contribution shows such modif-
cations including robust recursive methods (see Section 2), recursive methods in
L:-norm (see Section 3), recursive methods with missing observations (see Section
4) and asymmetric recursive methods (see Section 5).

2. ROBUST RECURSIVE METHODS

The assumption (1.8) may not be fulfilled in practice where various forms of
contaminated data can be expected. Therefore robustification of the Kalman filter
1s important for practical applications. Among numerous methods suggested in the
literature the robust modification of the Kalman filter based on the methodology of
the M-estimators seems to give results acceptable from the numerical point of view
(see Cipra, Romera (1991)). In this case one replaces the least squares problem

(1.10) by
(2.1) 2, = argmin{}y " 0u(pic — auze) + S 02555 — b)),
i=1 J=1

where 9y; and g9 are suitable loss functions with derivatives v;; and 1, ;j (the so-
-called psi-functions) used in robust statistics,

In order to obtain explicit results we confine ourselves to the special case of
contaminated scalar observations, where m = 1 (1.e. we have a row n-dimensional



vector hy instead of the matrix H, in (1.2)) and the assumptions (1.8) is replaced
by

(2.2) we € N(0,Q¢), v~ e-contaminated N(0,r,).

The e-contamination in {2.2) means that the normal distribution with an acceptable
variance ry is contaminated by a small fraction ¢ (e.g. € = 0.05) of a symmetric
distribution with heavy tails that is the source of outliers in scalar observations
{ye}. For such data with e-contaminated distribution N(0,1) (the unit variance can
be achieved by means of standardization) the Huber's psi-function ¥4 of the form

z for [z] < ¢

csgn(z) for|z]>¢

(2.3) wate) = {

gives robust estimates of location that are optimal in the min-max sense having
the minimal variance over the least favorable contaminating distributions. The
recommended choice of ¢ in (2.3) is ¢ = u;_,, where u, is the a-quantile of N(0,1)
(e.g. ¢ =1.645 for the 5% contamination of {y}).

Ifweputm =1, ¥1,(2) =9¥r5(z) =z, gy = Y u{z) in (2.1) then we obtain the
following robust recursive formula

¥ at—1
st _ at—1 t=1p1_—% Tcz(yt = hey ")
(24) BS a8 BT e o ( hPE Ry )

The exact recursive formula for Pf is too complicated so that one recommends to
use approximatively the formula of the classical Kalman filter

P{~ hih P!

2.5 Pl =p !~ ,
(2:5) ot hePEARY + 1y

Some special cases may be useful in practice:

(1) Recursive estimation in AR(1) process with innovation outliers:
In an AR(1) process

(2.6) Yt = pyt-1+ €1, € ~ e-contaminated iid N(0, &%)
with the corresponding state-space representation

(2.7) g = L1 4
(2-8) Yi = Yi-1T¢ + &4

(ie. Fi =1, Hy = ht = y1-1) one obtains according to (1.6), (1.7), (2.4) and (2.5)
the recursive estimation formulae

~ Ht‘—i t""l —1
(2.9) 2y =2 + P ye10" gy ( Pyt o o2
t-1Yi-1

-1 _2

= BHi-1.2 7 '
Pc-} Yi_1 +0

o(yt — Yi—1 I:j))
b

(2.10) P/




It can be proved under very weak assumptions that
(2.11) Zt— pa. s.

(see Cipra, Romera (1991)). The work Cipra, Rubio, Canal (1993) describes a
recursive procedure for autoregressive processes with additive outliers.

(2) Robust Holt method: The Holt method is a practical smoothing and pre-
dicting method recommended for time series with a locally linear trend. The corre-
spending dynamic linear model has the form

(2.12) Ly=Lywy +Tiuy + 0Ly, OL; ~iidN(0,0?),
(2.13) Tg "—"Tg...l '{"*aTg, 6’1’; ~udN(0, 0'3),
(2.14) yo =Ly +¢&, € ~ e-contaminated iid N(0,a?),

where L; and T} denote the level and the trend at time ¢, respectively. The residuals
{8L:}, {0T:} and {e.} are supposed to be mutually independent. If applying the
previous scheme one obtains the robust Holt method of the form

(2.15) Bi=Lil+ i’::% + (1 - @) ),
(1-a)3 St

(2.16) I} =T + (1 )1 —— sy ((1 - @)} lE‘),

(2.17) Gepr = L+ kTE for k>0,

where a,v € (0,1) are smoothing constants from the classical Holt method, e; =
ye — 917! is the one-step-ahead prediction error and s, is a suitable estimate of

standard deviation a(ef™!), e.g.
(218) 3 = 125%16;1 -+ (1 - X)St...l,

where s € (0,1) is a constant chosen near to zero and 1.25 approximates (m/2)}
(for details see Cipra, Rubio, Canal (1992)).

(3) Robust Holt-Winters method: This method generalizes the Holt methed for

seasonal data. E.g. in the additive case, the corresponding dynamic linear model
(called basic structural model in this context) has the form

(2.19) Le=Ley + Ty + 9L, 9L, ~iidN(0,0%),
(2.20) Ty =T,y + 0Ty, 8T ~1idN(0,03),
p~1
(2.21) Io==3 Li+8L, 0L ~iidN(0,0})
i=1
(2.22) ve=Li+ I + :','g , &y ~ e-contaminated 21d N{0, 0'2) ,

where p is the length of season, I; is the seasonal index at time t and the residuals
{0L.}, {0T:}, {OI,} and {e,} are supposed to be mutually independent. The cor-
responding recursive formulae of the robust Holt-Winters method including a real
data example are given in Cipra, Rubio, Canal (1992).



3. RECURSIVE METHODS IN L,-NORM

If choosing the loss functions p;; and o2j in {2.1) as absolute values one obtains
the Kalman filter in L,-norm (see Cipra, Romera (1992)). Here we confine ourselves
only to two special cases comparing the results with the ones provided by the classical
least squares approach (i.e. by the L;-norm).

(1) Steady model in L;-norny: The steady model applicable e.g. in finance has
the form

(3.1) Ty =Zi-1 +we, var(w) =g,

(3.2) Ye=zi+vy, var(v)=r,

under assumptions (1.3). The corresponding formulae provided by the Kalman filter
- in L;-norm are

(3.3) Ep= A+ (1 - A)E,
(34) Pl = A+ (1= ANBLT] +q),
where
. 1 forr, < P2} +
(3.5) A, = Iy ~¢t 1l 7
0 forry 2> P} +qu.

One can see that the state estimator #! for the steady model in Ly-norm is

restricted to two values only, namely #!=! or y,. It can be compared with the

following results for the classical steady model in Ly-norm

(3.6) £ = Awe+ (1- A:)f"::} ’
(3.7) P{=Are+(1- A)PT +q),
where
Pt—l
(3.8) A= iz T

——Ptt:;‘{'Qt'}'rl.

It is obviously

(3.9) A e { (3:1) forr, < P2l + 4
. t

(0, %-) for ry > Pf:ll + qe.

4

(2) Recursive estimation in AR(1) process in L;-norm: The Kalman filter in the
corresponding dynamic linear model (see also (2.7), (2.8))

(310) Ty = Ty

(3.11) Yt = Yu1Zs + €6, vare; = ol



gives in L;-norm the following recursive formulae

(3.12) = { B‘ﬁi—n +(1=B)EZ] foryey #0
. L ; ~
Ti-1 or yi—1 =10,
(3.13) P! = { B‘;?-:_x +(1=B)P/Z} fory_; #0
{ P::Il for y!-—l ."_'0 ,
where
5 1 for o? < y?_, Pi7}
(3.14) B, = V-1t 11
0 foro? 2yl P2

The parameter estimator Z{ for the AR(1) process in Ly-norm is again restricted

to two values only, namely y:/y(-1 or Z;_}. It can be compared with the following
results in Lo-norm

e St—1
(3.15) 3 = { ‘i‘i’?? +{(1-B)2,27  foryioy #0

T 1 for y;:—1 =0,

B3 +(1—-B)P}  forye—y £0
. t __ Ye-1
(3.16) P! = { e : ]
t—1 or yp—1 =,
where
(3.17) B = VP

yi P2 +o02

It is obviously

(3.18) B € { (5:1) foroa® <yi_, P
- 0,3} foro?>y?  Pi7}.

4. RECURSIVE METHODS WITH MISSING OBSERVATIONS

. As an example of recursive methods with missing observations we shall give the
modification of the Holt-Winters method that enables smoothing and predicting
seasonal data with missing observations (see Cipra, Trujillo, Rubio (1995)). We
shall confine ourselves to the additive case only since the multiplicative case is
analogical.

Let seasonal data {y,} with the length of season p be observable only at times
t1 <t < +-+ < t,. Let the symbols L, T} and I, denote the level, trend and
seasonal index at time t, respectively (see also (2.19)-(2.22)). In order to estimate

these values the following recursive formulae can be used modifying the classical
Holt-Winters method: ¢

(4.1) L, =Un(in = L)+ (1 = U Etn_, + (tn ~ taer)To ],
) L, -1 R
(4.2) T, = Vi, =222t L (1= Vi),

(4.3) Ly =W, (w, = L)+ (1 - W, )



with
(4.4) Ug, = .._..__..........‘.....__, ar, = (1 —Ot)t"—t"“" ,

(45) Voo = 5t — = (1= )t

(4.6) W,

where t;, denotes the largest value among tn-1, tn—z, ... such that the time t*
corresponds to the same seasonal period as the time ¢, (e.g. for monthly observa-
tions, if £, is a January value then ¢}, must be looked for among the past observable

January values only). The constants a,v,§ € (0,1) would be used as the smoothing
constants by the classical Holt-Winters method in the case without missing obser-
vations. The smoothing constants U, V and W used in the previous modification
with missing observations must be recalculated recursively according to (4.4)-(4.6).

The estimated level, trend and seasonal indices enables us to calculate the pre-
dicted values for m steps ahead

(4.7) g}f:_}.m = f,.“ + m'f}n + f(tn+,,,)- form=1,2,...,

the smoothed values

(4'8) gtn = 'f'tn + Iltn

and the interpolated values
(4.9) Ge=g " fort =ty +1,... ta—1,

where (t, +m)* in (4.7) denotes the largest value among ta,ta_1,... such that the
time (¢, +m)* corresponds to the same seasonal period as the time ¢, + m. The
details can be found in Cipra, Tryjillo, Rubio (1995) including real data examples
that provide acceptable results even in the cases with 50% missing observations.
Some theoretical results concerning the exponential smoothing methods with miss-
ing observations are derived in Cipra (1989).

5. ASYMMETRIC RECURSIVE METHODS

A simple asymmetric model useful for practical applications is the dynamic
linear model (1.1), (1.2) with scalar observations (i.e. m =1) and

(51) s Upgr~ N(O;‘I‘“,?‘gt).

The symbol N(0; ¢}, 03) denotes the split-normal distribution with the density

2c
riae(E) forz <0
(52) f(z) = { MR

T
= forz >0,

gi+og)as iP( 2



where ¢ is the density of N(0,1) (see Cipra (1994)). If using this model one can
replace the symmetric least squares estimation (1.9) by the asymmetric ones of the
form

(53) # = argmin{(3}™! — 2.)/(P) M@ — 24
+ 110 (e = hez) ™ + 13 [(ye — hezi)¥?)
It provides the recursive formula

Pl
hP{~ R, 4+ 1y

i—11
P;7 h}

(54) =871+ (ye = hedi™)™ + (30 — hedt ™),

Let us consider some special cases:

(1) Asymmetric Holt method:

(5.5) Ly=Liy +Ticy + are] +ogef,
(5.6) Ty =Tiy + erme; + aamef
(5.7) - Jier =L+ kT for k>0,

where &y, a2,71,72 € (0,1) are smoothing constants and e, = y; — §'~! is the one-
-step-ahead prediction error. For @) = a3 and 73 = 4, the method becomes the
classical (symmetric) Holt method.

(2) Recursive estimation in AR(1) process with asymmetric innovations: In an

AR(1) process
(5.8) Yo = PY—1 + &, € ~ 1nd N(0; o*?,cr%)

with the state-space representation (2.7), (2.8) one obtains the recursive estimation
formula

t—1 t—1
Pt_l Yi-1 Pt—l Yt—1

(5.9) 2 =171 (Ye—Yte1Z40y )~ o o (ye~ye—12i2H)T.
) ‘ = Ptt—lly?-l'i'o.? ik Ptt-llytz—l +‘7% . '

If one trims the prediction error e; = y; — y4—13'Z] in a suitable way one can prove
a similar consistency result as (2.11) (see Cipra (1994)).
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NEKTERE MODIFIKACE REKURENTNICH METOD PRO CASOVE RADY

V moderni analyze ¢asovych fad jsou velmi oblibené pro své vyhodné viastnos-
ti rekurentni metody vyrovnavani, odhadovéni a pfedpovidani. Pfisp&vek ukazuje
nékteré moZné modifikace t&chto procedur: (1) robustni rekurentni metody, (2) re-
kurentni metody v L;-normé, {(3) rekurentni metody s chybé&jicimi pozorovanimi,
(4) asymetrické rekurentni metody. P¥iklady modifikovanych rekurentnich metod se
tykaji Kalmanova filtru, exponencialniho vyrovnavani a autoregresnich procest.

HEKOTOPEIE MOIUSUKAIIMU PEKYPEHTHLIX METOLORB
BO BPEMEHHBIX PSLIAX

B coBpemenHom amand3e BPEMEHHHIX PANOB KaXyTCA OYeH NONMY/IADHLIMK
AJ15 CBOMX DOJE3EBIX CBOMCTB PEKYDEHTHhRIE METO L CraKMBAHUA, OUCHVBAHILA
U npemuknuv. B pafore mpeamoKeER! HEKOTOPHIE BO3MOMKEHEIE MOIMGUKAINAM
aTuXx npouedyp: (1) pobycTHEe pexkypeRTHBIE MeToasnl, (2) peKypeHTHHIE Mme-
Toau B Ly-BOpMe, (3) pexypenTHHIE METOAM C OTCYTCTBYIOLMMYK HabioeHm-
MU, (4) HeCUMMETDHMHBIE DEKyDEHTHBIE MeTOHB. IIpuMeps! MOMMOHINDOBAH-
HBEIX DEKYPDEHTHBIX METOHOB KacaroTca ¢uintpa KaidMmama, sKCIOHEHIMAJLHOTO
CIJIAKMBAHUA ¥ IPOIECCOB aBTOPErpPecCUu.



