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Abstract

The popular misunderstanding of the concept of robustness is discussed and il-
lustrated by examples. It is also shown that even the highly robust procedures do
not guarantee automatically anything, and that some a posteriori test is (at least
sometimes) inevitable,
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“HE CONCEPTS OF ROBUSTNESS AND THEIR DISCUSSION

The experiences of the generation of statisticians have yielded a numerous families of the
classical (parametric} probabilistic models. Much more recent experience says that even
very carefully measured data frequently contain a fraction (1% - 10%) of (gross) errors,
which are not-necessarily always easy to distinguish from the “proper data” (a lot of nice
examples may be found in [3, 4, 7]). In the theoretical counterpart it means that we should
not assume that the random variables are governed by a classical probabilistic model, but
- by a model which may slightly differ from the classical one. Unfortunately, it appeared that
many {classical) statistical functionals (estimators or test statistics) are not distributionally
continuous on the space of (all) probabilistic models, i. e. a small change of the underlying
mode] may cause a large change of the distribution of the statistic in question. The conse-
quence for the applications is that the contamination of data may have a fatal influence on
the behaviour of the functional.

The description of the problem given in the previous lines immediately hints a possible
remedy for the troubles, namely we should restrict ourselves on the distributionally continu-
ous functionals (qualitative robustness). In other words, we should look for such functionals
for which small changes of underlying probabilistic model cause only small changes of their
distributions.

Of course, in a nonprobabilistic processing data various attempts how to cope with the
contamination of data have also appeared. They have suggested to find such estimators for
which any changes of a (small) fraction of data does not influence the value of the estimator
too much (robustness with respect to the (outlying or inlying) data; [11], see the abstract
and paragraph 4.6). In what follows we shall show that the latter approach may lead to
considerable difficulties, namely that it is equivalent to the requirement that an estimator
gives model highly stable but sometimes unfortunately for a minority of data. A critical
discussion of the former one requires rather large space and will be therefore presented in
the forthcoming paper.

What is common to the both approaches is the quite acceptable assumption that the
data are mixture of some proper data, which may be described by a (usually) simple
underlying model, and of a contamination which of course represents a minority of data
([91). It implies that as a “true” underlying model is assumed such one which explains
the majority of data (compare also [7], p. 56). Another reason supporting the idea of the



construction of the model for the majority of the data is following. Usually we do not
want to specify even the type of the distribution of the contamination, and hence it is not
possible to say that the data are generated by such and such distribution which is a convex
mixture of the given two distributions.

Earlier than we shall continue let us recall what we expect from a “good” estimator.
Naturally, it is assumed that the estimator gives a result which is relevant for the identi-
fication of the underlying model, i.e. we expect that the estimator estimates the “true”
underlying model. Taking into account what has been said a few lines above, in the case
when data are not homogeneous we expect that the estimator estimates the model which
fits to the majority of data. But then it is clear that if we could give an example in which
a (small) change of a small fraction of data implies a large change of the underlying model
it would demonstrate that the robustness with respect to the (outlying or inlying) data
is the misleading concept. Indeed, if an estimator is robust with respect to the (outlying
or inlying) data then the (small) change of the small fraction of data does not cause too
large change of its value. On the other hand, as it was already said, in our example this
change of data will indicate the large change of the underlying model. The conclusion is
that the estimator is not able to recognize that the underlying models for the original data
and for the modified ones are considerably different. The following exhibits demonstrates
such situation {compare also [§] — exact-fit example}. | | |

EXHIBIT 1. “Decreasing” and “increasing” model
and the corresponding empirical distributions of residuals
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Of course, the example which was presented by Exhibit 1 is a bit artificial, and in practice
we would split data into two groups and process each of them separately. An example of
the same final effect with the real data will be given below. A graphical analysis of that
example also shows that it is sometimes impossible to divide the data into two paris and te
study them separately. Unfortunately, the results of such graphical analysis would require
a lot of space. .



Since the concept of the qualitative robustness could not grasp the (all) desired features
characterizing the robustness of the statistics (as a small sensitivity with respect to the
gross-errors, a small sensitivity with respect to (large number of) the local shifts etc.)
another concept of the robustness has been introduced, the concept of the quantitative
robustness ([7]). One of attractive characteristics of the quantitative robustness is the
breakdown point. Although the original definition ([6]) is a bit academic, the sample
versions (see e. g. [5]) are more practical and transparent. Under the breakdown point (for
given data containing n observations) we understand the ratio m/n where m is the smallest
number of the observations which are necessary to change (in an arbitrary way) to turn the
absolute value (or the norm) of the estimate into infinity (or for the estimate of variance: to
turn the absclute value or the determinant of the estimate to zero or infinity). Sometimes
instead of changing the observations we consider an extension of data, i.e. we assume that
we add m observations to the n original ones; of course asymptotically it is equivalent. It
is evident that generally the sample version of the breakdown point is sample-dependent,
and hence it does not seem to be very useful for characterizing the estimator. Fortunately,
it has proved that for many estimators the breakdown point is sample-independent. The
ureakdown point may be interpreted also as a limit value of the contamination level which
turns the (asymptotic) bias of the estimate into infinity ([13]), but we shall not go into
details.

It follows from the definition of the breakdown point that the higher is the breakdown
point the more resistant against the contamination is the estimator. In the other words,
if the estimator has the high breakdown point, in spite of the presence of the (large)
contamination it gives an estimate which is not too far from the “true” model. As we shall
see later the main trouble will be that it will not be clear, even theoretically, what is the
“true” model.

It is clear that the upper bound of the (asymptotic) breakdown point is 1, because if
the contamination would represent more than 30 % of the data, it would be questionable
what are the proper data and what is the contamination {although sometimes even such
model may be reasonable; consider e. g. signal-noise model).

One of the most frequently discussed problem is the problem of estimating location
parameter, and it is not difficult to find the estimator of location with the high breakdown
point. The median, which was used much earlier than the robust statistics have been
studied, is the example of the estimator with the (asymptotic) breakdown point equal to 1.

In the regressional problem (which will be discussed in the rest of the paper it was much
more complicated to find the estimators which attain (asymptotically) the upper bound .
Let us recall two of them (which will be used later in this discussion). First of all, however,
we shall introduce some notation.

Let N denote the set of all positive integers and R? the p-dimensional Euclidean space
(p € ). Finally, let (2, B, P) be a prbability space. For all : € N we shall consider the
regression model

Yi(w) = XF(w) 8 + ei(w)

where { X;(w}}2,, Xi(w) : @ — R? is a sequence of independent random variables (carriers),
B° € RP and {e;(w)},, ei{w) : Q — R is another sequence of independent and identically
distributed random variables (fluctuations), independent fom the sequence { Xi{w)}2,. For
any f € RP let ri(B,w) = Yi(w) — XT(w) B be the i-th residual and rf; (B,w) the i-th
order statistic among r?(8,w),r3(8,w),...,r2(8,w). Then the Least Median of Squares



est.iina.tor ié deﬁnédl as
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where 2 < h<n (.in the original Rousseeuuf’s proposal h was selected to be equal to [3],
hence the name of the estimator). Similarly the Least Trimmed Squares estimators is given
as | )

‘(“vh) . 2

= min iy (Byw). 2

Bixs' (w) arg m ; iy (B, w) (2)
If we put A = {g-] + [*"—‘%’i} the breakdown point of the both estimators is equal to
n-' . ([2352] +1) (see [18]). It means that asymptotically, thesc estimators have 50 %
breakdown point. Now we are prepared to give the example which was promised above.

We shall use the “Engine Knock Data” which are given in Table 1. They were published
in [14] and later analyzed once again by Hettmansperger and Sheater [8].

TABLE 1. Engine Knock Data

case Spark Air Intake Exhaust Knock
1 13.3 13.9 31 697 84.4
2 13.3 14.1 30 697 84.1
3 13.4 15.2 32 700 88.4
4 127 | 13.8 31 669 84.2
5. 144 13.6 31 631 ~ 89.8
6 144 13.8 30 638 84.0
7 14.5 13.9 32 643 83.7
8 14.2 - 13.7 31 629 84.1
9 122 14.8 36 124 90.5
10 12.2 15.3 35 739 - 90.1
1 | 122 14.9 36 722 89.4
12 12.0 15.2 37 743 90.2
13 12.9 15.4 36 723 93.8
14 12.7 16.1 35 649 93.0
15 12.9 15.1 36 721 - 93.3
16 12.7 15.9 37 696 93.1

The “Knock” is assumed as the response variable, the others as the regressors. The LTS-
estimates of the regression coefficients are given in the following Table 2.

TABLE 2. Estimates of the regression coefficients (with Air = 14.1)

Regressor | intercept | Spark | Air | Intake | Exhaust
LB | 35.1134 | -0.0275 | 2.9490 | 0.4774 | -0.0091

The values given in Table 2 were obtained so that the all 4368 subsets containing 11 ob-
servations was taken into account and on each such subset the LS-estimator was applied.
It means that the values given in Table 2 are precise solution of the minimization given in
(2) (and not only an approximation as in the case of larger samples of the data). When we
- change the value of the “Air”-coordinate for the second observation to 15.1 (instead of the
correct value 14.1) we obtain the following LTS-estimator of the regression coefficients.



TABLE 3. Estimates of the regression coefficients (data with Air = 15.1)
[ Regressor | intercept | Spark | Air | Intake | Exhaust
3ixs | -88.7289 | 4.7194 | 1.0576 | 1.5693 | 0.0676

Comparing Tables 2 and 3 we find that the estimates for the correct data and for the (slight-
ly) modified data are rather different. It means that we have obtained for real data a very
similar effect as it was demonstrated in Exhibit 1. (Similar effect has been discovered for the
correct and modified Engine Knock Data and for LMS-estimator by Hettmansperger and
Sheater [8]. However it appeared later that it was due to an unsatisfactory approximation
of the precise solution of (1) (see [25]) ).

It again confirms that the concept of robustness with respect to the (outlying or inlying)
data is dubious. Of course, thinking about the robustness with respect to outlying or inlying
data once again, one may perhaps come nearly immediately and without any other hints
to the same conclusion which the examples given above have implied. Then it is even
more surprising how the concept of robustness with respect to the outlying or inlying
data is still overliving (see [12]). Maybe, it is an example of the situation which may be
commented by the famous: Any problem has a simple false solution. Of course, one may
immediately ask why then some of methods about which the authors claim that they are
robust with respect to the outlying or inlying data are in fact robust in some other, easier
and more corretly justifiable sense. It is a consequence of the fact that the procedures in
question accidently coincide with such a procedure which might be derived in the statistical
framework, see [15]. Moreover, using the statistical framework we may avoid some steps
which cannot be heuristically fully justified. In the paper [11] which was refered at the
beginning of this paper, such a step had the consequence of implementation of the metric
into the observational space. Of course, it is usually a part of R*, and so it may be assumed
to be Euclidian space. On the other hand, no “natural” feelings about uncertainty implies
any metric on the level of the observations. Notice also that the theory of probability
corresponds with it, introducing the metrics just in the space of (all) distributions.

The discussion of the concept of qualitative robustness, i.e. robustness with respect to
the small changes of the probabilistic model from the application point of view requires to
introduce some other data and notions and hence will be discussed in some further paper.
Instead of it we shall utilize the modified Engine Knock Data for the discussion of the (high)
quantitative robustness. Earlier than doing that let us return for a while to the LMS and
LTS-estimators.

DIVERSITY OF THE ESTIMATES

As it was already said the both estimators have the asymptotic breakdown point equal to 1.
It means that the contamination of data may be nearly 50 %, nevertheless the both estimates
should be near to the “true” model. Due to this fact it seems that the both estimators
may be used as diagnostic tools to reveal the influential points (outliers and wrong leverage
points; see [T}, p. 331 or [18], chapter 6.6). But for the modified Engine Knock Data we
obtain following LMS-estimate of the regression coeflicients (in following table we give also
LTS-estimate, to facilitate comparison). The LMS-estimate of the coefficients have been
evaluated by the software which is due to Pavel Bocek and we are grateful for the possibility
to use it. The method of the evaluation is based on the algorithm for the dual problem of
linear programming (see [1]). This method was {much) quicker and gave smaller “median”



of the_squa.ted residuals for any up to now processed data than anv other available method
(see [10]).

TABLE 4. Estimates of the regression coefficient (data with Air = 15.1)

Regressor | intercept | Spark Air | Intake | Exhaust | 11*P res. | sum of 11
Bivg) -88.72 | 4.7194 | 1.0576 | 1.5693 | 0.0676 | 0.539 0.728
Bims 48.38 |-0.7318 | 3.3925 | 0.1947 | -0.011 | 0.450 1.184

(“llth res.” means that it is the llth smallest value among the squared residuals; similarly
“sum of 11” means that it is the sum of 11 smallest values among the squared residuals.)
Analyzing Table 4 we conclude that the estimates are considerably different. One may have
a suspicion that it is due to the smali number of observations. Rousseeuw ([17], paragraph 7)
proposed a rule of thumb that there should be at least 5 observations per dimension.
However, it is possible to enlarge the number of observations in the Engine Knock Data
(we have at hand already such data) and to show that the effect will be preserved. We shall
not present these data here, instead of it we prefer to give an artificial data which enlighten

- the problem better.
’ EXHIBIT 2. LTS and LMS estimates for the artificial data

The Exhibit 2 shows tha.t the key problem is that the data may be expla.med (or fitted, if you
- want) by two, rather different “true” models, and it is impossible to decide, without some
additional a posterior criterium of quality (or of fit) of the estimate (not of the estimator),
which of the estimates is better. Let us analyze the situation which is depicted in Exhibit 2.

The data may be evidently explained as a mixture of “proper” data and the contamination.

But it may be done in two ways. One model may consider the points 1,2,3,4,5 and 6 as
the proper data and the rest as the contamination, another model may propose to consider
the points 2,3,6,7,8,10 as the proper data and the rest as the contamination. One may
however object that with the increasing number of observations {i.=. asymptotically) the



points from the proper model has to reach majority. But on the other hand it may appear
that the points 1,4,5,7,8,9 and 10 are atypical (although some of them may be good
leverage points; keep in mind that we have assumed random carriers, although even for
“deterministically” selected points in the factor space a similar situation may appear). So
the observations which we shall obtain when we shall increase size of sample may fall into
the region of the points 2,3 and 6, and then even for a very large number of observations
the effect of considerably different values of the (highly) robust estimators may take place.

FORMALIZING THE DIVERSITY OF ESTIMATES

First of all, let us recall that we consider the linear regression model
Yi(w)=XF(w)B+e(w) i=1,2,... . (3)

In what follows we shall understand by the linear regression model usually the equality
{3) for the first n indeces and we shall abbreviate it by (D,(w), 8) where D,(w) stays for
(¥;{w), Xi(w)) i=1,2,...,n, possibly with an upper index which will distinguish among
different models.

The task is to “explain” the unique sample of data given as a (n x (p + 1))-matrix of

numbers
Y1, Zus, """y Typ
Y2, 221, ***, T2p

D, =

Yny Tnly *°°y, Tnp

We usually implicitly assume that the data have been generated by a linear regression model
(D8(w), B?), i. e. that for some wp € N we have

yi =Y (wo) and =i; = XJi(wo) (4)

fori=1,2,...,nand j =1,2,...,p. Notice that wy generally depends on n, p, D (w), etc.
We have used the word implicitly to indicate that we do not usually try to specify fully
0, B, P, {¥2(w)}Zy, (X)), {e2(w)}2yr 8 € BP and w so that (3) and (4) are ful-
filled but we want only to estimate the unknown vector 8° (for which some linear regression
model fulfilling (3) and (4) may exist; of course there may be a whole family of models —
maybe with different 3’s and generally also different distribution functions F - all of them
fulfilling ((3) and 4) as well), Sometimes we try to estimate also the d.f. F of residuals, nev-
ertheless again we do not specify fully D,(w). In what follows in the case when we shall con-
sider a collection of linear regression models, say (D}(w), 8'), (D%(w), #2),..., (D (w), B%),
we shall abbreviate the equalities (4) for £-th linear regression model as D% (we) = D,.

In order to find an estimate 2 (a vector of numbers) of 8% we construct in the frame-
work of linear regression models {D}(w), 8°},Z, a sequence of estimators S(D(w)): 2 —
R?, n=1,2,... such that B(D%(w)) — B° a.s. or in probability as n — o0o. Possibly the
estimator has some other other plausible properties, e. g. small gross-error sensitivity, high
breakdown point, etc. Notice how the construction of the estimator has been performed or,
in other words, what is the usual structure of the theoretical assertions: We keep fix the se-
quence of regression models, i. e. we keep fix the sequence of carriers { X?(w)}2,, response
variables {¥°(w})};2, (or equivalently the sequence of random fluctuations {€?(w}}>,) and
a fix 8% and then we prove some properties of the estimator §(D?(w)).



In what follows, in the case when we shall not want to specify the regression model
(Da(w), B), we shall write also B(w) for an estimator to emphasize only the dependence
on w and to distinguish it from the estimate B, i.e. from the vector of numbers. Having
defined the estimator 3(D?(w)) (please keep in mind that it is a function of the system of
random variables {D2(w), 8°}>.,) we consider as an estimate of 3° the value 5({D%(wo))

B(D,) (see (4)). But it does not guarantee automatically that the estimate A will be a,lso
“reasonable”. The matter will be discussed below, nevertheless, please notice that even we
~ do not know whetker the point wq lies in the corresponding set of high probability.

Moreover, to describe the real behavior of the estimator it may happen that we need
to assume that generally for any fix n we need another system {Di(w)}}., . Let us formal-
ize this fact. In what follows the upper index will distinguishe also among the different
estimators. Let us assume two different estimators #*(D!(w)), h,¢ = 1,2 constructed in
two different regression models with generally D} (w) # D3(w) and 8! # ﬂz Of course, we
assume that the both models will be used to explain the same data, i. e. that there are
wy and wy so that Di(we) = Dn, ¢ = 1,2. Having applied the estimators BY(D}(w)) and
A*(D?(w)) on the data D, we may find that the norm ||,6’(Dn) — B¥(D,)| is significantly
1arge (see [2] or [19]). At a first moment it may seem surprising because both estimators
have been constructed to be asymptotically consistent {and maybe even with high break-
down point). As we have seen from the Exhibit 2 the Least Median of Squares and the
Least Trimmed Squares (both being consistent and with 50 % breakdownpoint) may be
orthogonal each to other. One may then conclude that probably some assumptions under
which the good properties of the estimators have been proved (the assumptions some of
‘which we principally cannot check) were distorted, and hence we have no justification to
apply these methods. | |

It may be true but another possibility of a “strange mutual” behaviour of the estimators
may be the fact that we have 51(D,) = SY(D!(w,)) while #3(D,) = B%(D?(w2)), of course
with Di(w;) = D3(w;) = Dn, however with D:(w) # Di(w) and B' # B?, and of course
with generally 3'(D2(w)) # S*(D?(w)) . Then 8'(D.) may be near to 8! while A%(D.) is
near to A%, however 8! bemg possibly far from 2. In the words, the estimators assume
implicitly different regression models (D}(w), 8') and (Di(w), %), respectively. It does
not mean that §(w) or 3%(w) are not asymptotically con51stent We may quite well have

ﬂ‘(D:(w)) — [ in probability, as well as §%( D(w)) — B! in probability, neverthe-
N-=+00 ' ’ R==0

less for our data they may behave as it was described above, i.e. estimator 3'(w) may
prefer to assume that the data have been generated by the model (D}(w), ') while the
estimator 4%(w) prefers (D3(w), §%). At this moment one may object that with increasing
size of sample both estimators should start to assume simultaneously either (D} (w), 8*) or
(D?(w), B?). Firstly, such assertion is of a little help for processing a unique set of data
of a fix size. Secondly, even if we accept for a while the questionable assumption that we
may increase the number of observations as much as we like, even then we should be more
careful. In fact we may claim (in the case of strong consistency) precisely followmg
If B"(w) is strongly consistent in the linear regression model {(Di(w), B9}, then

n=}

(3(Bre€B, P(Brd=1) V(@€ Brgye>0)

3 (@6 ), (DU ) € N) V(n € N 1 2 m(@ye, B4w), (D)} 2,)



I18*(DL(@)) - B4 < e.

- And only an uncritical belief in the traditional paradigma may prevent us to see that for any
fix, finite size of sample it does not help too much. It is easy to imagine that for a sequence
of samples {D,}%, we may have a system {{D,‘;(w)}:;1 } tec Such that for any n € N

there is wn¢ such that D, = D!(wn). Now the estimator #*(w) may assume implicitly
for any n € N “behind the data” different system of random variables D! (w), i.e. ¢ may
be a function of & and of n, i.e. £ = fy(n). It may be caused e.g. by small or mediate
size of sample or by varying level of contamination etc. The “selection” of the system of
random variables which might generate our data is of course (for many types of estimators)
independent of our will or assumptions, it just reflects an “interpretation” of the data by
the estimator. So we have D, = D"\, fn(n))» hopefully with wny, (n) € B, g, (n) (of course
we assume that D = Dn_y U {yn, Zn1,Zn2, ...y Tnp}) and for some & > 0 it may happen that

m(wnﬁ(n)y &, Bi(w)s {D{l(ﬂ)(w)}:l) <n<g m(wﬂfz(ﬂ)iel Bl(w)’ {‘sz(")(u)}:’l)

~ and

| m(“-’nfz(n):s: Bz(‘”)r {Df(n)(w)}:__l) <n< m(“’nﬁ(n)s &, B?(w), {D)’?(ﬂ)(“’)}:l)’
i.e. we have for all n
B (Da) - Bl <& aswellas 1A%(Da) - Bl < e.

In the case of weak consistency the situation may seem at the first moment more trans-
parent (because of the uniformity of the convergence): If §%(w) is weakly consistent in the
linear regression model {(D%(w), 9}°. . then

V(e>0,6>0) 3(mle,b B w), {DPiw)},) €N)
¥ (ne N,n > mie, 8 3w), {Dh@)},)
P({w € Q: IBHDE(w) - 8 > 8}) <,

but we may still ha.ve
m(e, 6, 8'w), { DLV} ) < m < mie6.8'), {DEV@] )

and

m(e,8,8w), {DEVW)} ) < n < mie,8,5%w), (DL W)} ).

At this moment one may object once again. The assumption that it may happen that
for different n € NV the data D, are represented by different systems {D2( (w)} does not
agree with our natural feeling for, or belief into, the “stationarity” of data. But it is not
inevitably the problem of the stationarity of data and its reflection in a mathematical model.
The problem may be that the estimator may assume implicitly rather different representa-
tions for the two samples of data, one of which is a subsample of the other. And the expe-
riences with robust (especially with high breakdown point) estimators confirm that. On the




other hand, the matter is not so much surprising, we may just imagine an ancillary param-
eter which is not explicitly given in the problem, which however “selects” the fa.rmiy of
distributions which will be taken into account.

_ It seems clear that the described phenomenon cannot appear for maximum likelihood
estimators because in this case the (type of) distribution is imposed into the model as the
assumption {e. g. the least squares estimation with the implicit assumption of normality
of random ﬁuctuatxons) However it is true only for the estimation in a “fully” parametric
model. In the regression it would be true only if we also assume one given family of
distribution for the carriers. On the other hand, it was jusi such assumption which proved
to be sometimes a weak point of the classic statistics, and it was an inspiration for developing
the robust statistics. However weakening the assumption about the type of distribution of
random fluctuations may cause the effect which was described above. Naturally, we hope
that it is not generally the rule.

 Maybe that we shall see the probiem better from another description of situation by
means of empirical d. f.. We shall use a littic changed notation which is more usual i in such
framework.
~ Let us denote for any B € RP by Fa(t,B) the empirical d.{. of the empirical resxdua.ls ‘

rB) =y —zlf i=12...,n e

Fo(t, ) = — Z I{zGR y.--'-"r,3<=}(t)

l=l

Please do not confuse F,.(t B) with F (u, ,B) which is given as

Fo(w,t,8) = n”l Z I{w'Eﬂ. 2€R : ﬂ(w’l“x?(”'m(;}(w’t)
s=1

and which is sometimes also called the empirical distribution function. Of course, F,(t,8) =
Fo(wo,t, B), for some wy, however the difference is that F,(t, 8) is known while F,(w,t, 5) is
unknown except at the point wo. Now, considering 8* # 8= € RP, we may find absolutely
continuous d.f. F. and F.. so that using e.g. the Prokhorov metric » we obtain for some

small positive § :
V(Fa(t,87), F.) = v(Fa(t,57), F..) < 6.

Then we may claim that our data D, were generated by a model
Y =XTg+e i=1,2,...

with {e7}%, being a sequence of independent random variables with d.f. F.. But the
- same holds for §** and F... Then we cannot be surpnsed that one estimator may give
the estimate 3* near to 8" while other gives (== which is not far from 8. And it is
easy to imagine that F, and F.. can be selected so that even the values of likelihoods
(or values of some other statistics) at our data D, (more precisely at residuals r;(") and
ri(f™), i = 1,2,...,n) can be the same. And it is clear that the size of sample did not
play any role in the explanation via empirical d.f. being valid for data of any fix size.

So (returning to the earlier full notation) we may guess that for example it may be
interesting to study conditions under which the estimator assumes implicitly for the ail »
the same (or nearly the same) sequence {Da(w)}3%, nevertheless uader which it does mot
suffer by low robustness (as the maximum likelihood estimatore frequently do).



Maybe that the minimal distance estimators may seem to be promising solution of the
problem. Nevertheless, the technical difficulties which we encounter when trying to find
an absolutely continuous distribution which is the nearest one to the empirical distribution
(of residuals), force us to take some measures which may at the end give the estimators
which suffer by the same disadvantage. Remember that in many cases the minimal distance
methods yield the estimators with the redescending influence function (see [22]), and it is
known that such estimators exhibit also the property of “diversity of the estimates”, see
[25].

IDEAS OF SELECTION OF APPROPRIATE ESTIMATE

There are at lcast two straightforward ideas which have been studied up to now and which
may help to cope with (not to solve) the problem of diversity of the estimates. Both of them
may be used for any type of estimator, however for one of them we have at our disposal
applicable results only for the AM-estimators.

The first idea might be called the subsample stability. The idea is simple. If our esti-
mator is “appropriate” for the given data, and is able to “recognize the true model” then
it should be able to do the same for the (reasonable) subsample of data. In other word-
s, the estimates for the full data and for a subsample should be similar. Let us denote
by B(™fm) the estimate which we obtain for data (y;,2;), i € {1,2,...,n} — I, where
L, = {8182y, 008k, } with 1 € 4; < 4 < -+ < &g, < n. Then the idea of subsample
stability says that if we find that the norm [|(™/n) — 3|l is significantly large we should
reject 3™ as the appropriate estimate for our data. Under some regularity conditions on
the criterial function 1 (of the M-estimator) an asymptotic formula for (™) (w) — 3(*}(w)
is known for the case when either k, is fix, either lim,_. k, - n=" = X (for some T € (0,1)
and A € R) or limk, - n~! = A (for some A € (0,1]). The simplest one is the formula for
the second case (the other ones may be found in [26]):

| nk:% (ﬁ(ﬂ-fk”)(w) _B(u)(w)) — k:%‘,r—lq—l Z X;rtl)(e.(w) a,-l) + Op(l)

i€ly,,

where v = ¢ ' E¢'(ey 0™1) + XL, f(reo) [(re+) — ¥(re—)], r1,72,...,7, are the points
of jumps of the function ¥ and Q = lima_co L[X™]T X" (X"} - design matrix). Using
the Central Limit Theorem we may then find an approximations for the critical region for
nk-% (B(""'*n)(w) - B(")(w)). (Similar problems have been studied in [24]).

The second idea is also simple. If the estimate is appropriate for given data when the
“empirical density” of the residuals in two complementary subsamples of data should be
similar. It might be called distributional homogeneity. Let us put

H(Y ) =n [ [ Y®,8) - iz Y,8)] fulwnY.B)ds

where Y = (Yi,...,Yg)), Y@ = (Yigpao- s %a) , ¥ = (Y Yoy, Vo), {an}i2y S o0
‘and fig)(2,Y™), B) is the kernel estimate

9 [n/2]

figi(z Y, 8) = =3 w ([ — (¥; - X7A)))

s=l



etc. Then, again under some regulanty conditions, the asymptotlc distribution of the
statistic

Ha(Y, 8°) = AT Ha(Y, %) = mn}
is N(0,1) where e
My = %c,f‘ j wi(t) dt

A? = -;-c“ f’(t) dt / @{ f: w(s) w(s + ) ds}zdz

where f is the densﬂ'.y of the dsstnbutxon function F of e;.

 Itis clear that the statistic H,(Y) ) is the weighted Iielhnger distance of the correspond-
ing kernel estimates of the residual density. Of course, it is not very simple to compute
its value, however using e.g. Romberg zigorithm and some not very slow computer it is
applicable for small and moderate samples. Details and a numerical example may be found

e.g. in [20].

and

CON CLUSIONS

The discussion which was given above may tempt us to say that the (high) robustness does
not guarantee anything. But it would be false conclusion.

First of all, it guarantee that the method does not suffer by the (large) sensitivity to the
sma.ll changes of the distribution of the errors in the regression model. On the other hand,
taking into account the examples given above we have to admit that it does not guarantee
automatically anything. But after all, if somebody would claim that some method of pro-
cessing data is successfully applicable on any data, would we trust into such assertion?
(However, the belief into the miracles has probably the deeper roots than one may expect,
see [21], p. 111.) It is clear from the presented examples that we have essentially two
possibilities:

At first, to evaluate an estimator of the regression model and then we may test whether
this estimate is appropriate for given data. Of course, some our ideas about the distribution
of the residuals are anycase included in such testing, i.e. we have to express our naturally
subjective belief that data are probably distributed so and so. One may object that the
belief into the type of the data distribution may be objectively confirmed by some test which
does not require any a priori assumptions. Unfortunately such idea is only an illusion, see
[16]. |

Secondly, we may try to incorporate the idea of accommodation of the estimate to the
data directly into the estimating method, i.e. to construct such methods which have built-
in e.g. the idea of subsample stability. Similarly we could define a weighted-Hellinger-type
minimal distance estimator. Leaving aside that the practical applica.bil.ity of such estimator
is problema.tic it may suffer by some other dxsadvantages (e g- it is not asymptotically
efficient).

Similarly, we may try to estimate, using some preliminary estimate, the density of resid-
uals and then to find the maximum likelihood estimates of the regression coefficients. Such
estimator has been studied in [23] and it proved to be theoretically plausible (asymptot-

- ically normal and efficient). Of course, to apply it, may be a terrible task (leaving aside

- that we may expect a good performance only for the large samples).



It may seem that in two latter cases, due to the adaption, we have reached the objectivity
in the sense that the result is independent from any subject. Of course, it is again only the
illusion. |

So we may conclude: When estimating regression model we should apply several meth-
ods. In the case that the results are not significantly different ({19]) we may select one
of them, probably according to some a posterior criterium which may (or even should)
be inspired by the expected interpretation of the model which anyway incorporates some
our opinions, some steps of belief, etc. The criterium may, of course, utilize also the ideas
related to the subsample stability, to the distributional homogeneity, etc.

In the opposite case the possibilities explained above may give some hint which model
may be acceptable for given data. None of them however can decide alone without a dis-
cussion with an expert in the region which the data came from. Any case, results of analy-
sis of such data should not be the basis for a decision with possibly considerably important
consequences.
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