Conditions for Consistency

of Minimum Contrast Estimators and M-Estimators!
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Abstract: Minimum contrast estimators based on depending obeervations are considered. A condition is
found which is necessary and sufficient for consistency of all asymptotically minimum contrast estimators.
Specification of this condition for M-estimators of parameters of nonlinear and linear regression with
random regressors is studied and the consistency is established under very general assumptions.
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1 Imtroduction

The influential paper of Pfanzagl (1969) introduced theoretically important classes of
minimum contrast estimators (MCE's) and asymptotically minimum contrast estimators
(AMCE's) as generalizations of maximum likelihood and asymptotically maximum like-
lihood estimators (MLE’s and AMLE's). Using this paper, Strasser {(1981) formulated
simpler reasonably weak regularity assumptions on estimation models guaranteeing the
existence of AMLE'’s and found a condition equivalent with the strong consistency of all
AMLE's. Under weaker regularity assumptions Vajda (1992) found a condition equivalent
with the usual (weak) consistency of all AMLE's.

In this paper we consider AMCE's for general depending observations. We formulate
regularity assumptions under which AMCE’s exist and introduce a condition equivalent
with the weak consistency of all AMCE's. Easily verifiable conditions sufficient for con-
sistency of all AMCE's and for inconsistency of all AMCE's are established as well. These
conditions are used to prove consistency or inconsistency of some MCE's and AMCE's.

The sufficient condition is then specified for M-estimators of parameters of linear and
nonlinear regression with stationary and ergodic errors and regressors. It is shown to yield
sufficient conditions for consistency of M-estimators in nonlinear regression analogical
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sufficient conditions for consistency of M-estimators in nonlinear regression analogical
to those of Jennrich (1969), Richardson and Bhattacharyya (1986), 1987). In the linear
model with i.i.d. errors and regressors these conditions reduce to the conditions presented
by Chen and Wu (1988).

2 Regularity assumptions

Let (X, A) be a measurable space and (8, d) a locally compact separable metric space. We
shall be interested in estimation of an unknown parameter 85 € © on the basis of random
observations X = (Xi,...,X,) defined on a basic probability space (1,5, P) and taking
on values in sample probability spaces (AX*, A, Py, 1), n € N. The unknown distribution
Py, is assumed to belong to a known family P, = (P : 0 € ©}. The value of §; is
assumed to be fixed and the quantifier “for all 8, € ©" is systematically omitted. Note
also that the sample size index n is omitted in the symbols for observation variables, i. e.
that in fact we admit triangular observation schemes

X = (x{"’,...,x}r’).

Throughout the paper we use the open spheres S, = {# € © : d(0,0,) < a}. The
interiors of their complements S¢ = © — S, are denoted by S, .. The attention is restricted
to @ > 0 such that S¢ # 0. The standard topology and arithmetics of the extended real
line R, introduced e.g. in Prerequisities of Halmos (1964), are used without specific
references.

An estimator is a sequence of (A", B)-measurable mappings 8, : X — ©, where B
denotes the Borel o-field of ©. The estimator is said consistent if 8, — 6y in P. This
means that, for all sufficiently small a > 0,

..'i.'L‘,P(”" €S)=1 (1)

Under present assumptions about ©, this is equivalent with

JEI; P (0, € S.'g) - 0-

The definition of MCE and AMCE is based on the so-called contrast function f(z,0):
X © O — R proposed by Pfanzagl (1969). First we introduce some useful notation. Put
for8cO 8#BCO,andn€eN

Ja(x.8) = %Z falzir0), x= (zl!"'!:n) 3 4 (-—-00 + 00 = —00),
and

Ja(x,B) = }élgf(x.o), x€ A", f(z,B) = fi(z,B), z€AX,
[(8) = [fa(X,8), [+(B) = fa(X, B).



In general, f.(9) and f.(B) need not be random variables. If, however, z — f(z,0) is
A-measurable then x — fu(x,0) is A™-measurable, so that f.(9) is an R-valued random
variable. Following Strasser (1981) we assume that f(z,0) is A® B-measurable and that
the random function & — f.(8) is separable (see § 2 in Chap. 11 of Doob (1953) for OCR
and Borges (1966) or p. 266 in Pfanzagl (1969) for the general © under considerations a
systematic theory is studied e. g. in §§ 2,3 of Chap. Illin Gikhman and Skorokhod (1971)).
The measurability implies that fu(¢,) is an R-valued random variable for every estimator
8.. The separability implies for each the existence of A, € A* and with P(X € A,) =1
such that for every nonempty open B C © there is an at most countable subset B.CBHB
with the property

fa(x, B) = fa(x,Ba), X € Aa.

Hence, for every nonempty open B C ©, the restriction of fu(x, B) on A, is A* N A,-
measurable and f.(B) may thus be viewed as an R-valued random variable.

It is known (cf. the above cited references) that if all functions z — f(z,8), 0 € O,
are A-measurable then the separability of the random function 8 — £,(9) follows from its
P.a.s. continuity or stochastic continuity.

Throughout the paper we restrict ourselves to functions f(z, 8) satisfying the following
two regularity assumptions.

(A1) The function f(z,0) is A® B-measurable and, for every n € N, the random
function @ — f,(0) is separable.

(A2) For every n € N, the random function & — fa(8) is P-a.s. lower semicontinuous
on O.i.e., for Ps, n-almost all x € X*, liminfy—o fa(X,0) 2 fa(x,8) if 8 — 0.

The observation model is supposed to satisfly the following assumption.

(A3) For every n € N, the family P, consists of measure-theoretically equivalent distri-
butions.

As indicated above, these assumptions are inspired by the paper of Strasser (1981).
That paper was restricted to the special case with independent observations, i.e. with

Pro =Py, 60, (2)

where the marginal distributions Py, 8 € 6, do not depend on n € N and are dominated
by a o-finite measure u on A, and the contrast function is of log-likelihood type,

f(z,0) = ~In ((‘%ﬁ) (z)) (- a0 = o). (3)

Our assumptions are simpler than those of Strasser (1981) and are more easily verifiable
than those of Pfanzagl (1969) who was also restricted to the i.i.d. case (2).



Remark 1

{A3) can be replaced by the weaker assumption that, for every n € N, P, is dominated
by a probability measure Q,, provided that at the same time the semicontinuty and
separability of 8 — fu(X,0) in (Al) and (A2) are replaced by the semicontinuity and
separability of 8 — f,(Y,#) for Y with the sample space (X", A", Q.). In this case
Lemma | below can be proved simply by replacing Fi;.» by Qa. Proof of Lemma 3,which
is is the only remaining assertion of this paper where (A3) is employed,can be modified
analogically. In this manner one casily obtains slightly extended versions of all the results
that follow.

3 Basic definitions

Now we can complete the definition of contrast function and present the definitions of
MCE and AMCE. Our definitions differ from those of Pfanzagl (1969) only in technical
details, connected with different regularity assumptions and with our aim to study the
weak consistency of estimators.

A contrast funclion is a mapping f : X ® © — R satisfying the assumptions (A1),
(A2). A minimum contrast estimator (MCE) is an estimator 0, such that

fn(on) = f,.(G) P-a.s.

An asymptotically minimum contrast estimator (AMCE) is an estimator 8, such that, for
some ¢, | 0,

lim P (f2(0.) < J2(8) + ) =1 (4)
where, here and in the sequel,
fAC) = 9o ful) (5)

for v : R — [~1,1] defined by ¢(z) = /(1 + |z|). AMCE's are also calied approzimate
minimum contrast estimalors (cf. Periman (1972), Strasser (1981)).
Note that Pfanzagl (1969) defined in the special case (2) AMCE by the condition

nl'i.n':o (f2(0.) - f3(B)) =0  P-a.s.

Similar definition has been considered under (2) and (3) by Strasser (1981). Replacing
here the a.s. convergence by the convergence in probability we obtain (4). Hence our
class of AMCE's is wider irrespectively of whether (2) or (3) is assumed or not.

Note also that the identifiability property of contrast functions

Ef(8) > Ef(0), 8 €0, 0# b, (6)

assumed under (2) by Pfanzagl (1969). is not required by our definition but will be
considered below (cf. Theorem 3).



Example 1

Let © be a Borel subset of R and let us consider (2), with a dominated family {Fy : ¢ € ©}
of probability distributions on the Borel o-field of R having the first absolute moments
finite. Then the least square error

f(z,0)=(z-0)", z€R,

is a contrast function. Indeed, the process
1 ¢ 2
0 — - ?ﬂ(x. )

is continuous for every n € N, so that (A1) and (A2) hold. The sample mean

l n
9.=;ZX.'

is obviously thus MCE provided © = R. The least absolute error
f(3i0)=|3-0|s z€R,

is another possible contrast function, for which the sample median

; Xws1) ifn=2k+1
% (Xix) + Xusr)) ifn =2k

-

is MCE provided ©® = R. If © is a closed subset of © then the projections 8., 0 of
8., 6, on © are the respective MCE's. If O is a proper nonclosed subset of © then the
corresponding MCE's may not exist. For example, if © is the set of rational numbers and
Py = N(6,1) then neither the least square error nor the least absolute error estimator
exist. We shall see (cf. Lemma 1 below) that the corresponding AMCE’s 8. and 4, do

exist.

Example 2

This is a simplification and generalization of Example 3 on pp. 410-412 of Lehman (1983).
Let (X, A) be the real line R with the Borel o-field of R. Put 6 = (0,1), and consider
the Lebesgue measure u on A, and an increasing function ¢ : [0,1) — R, such that

|
WO >3,  8€(0,1) (7)

Under this condition the closed intervals

Av=1[8,0+e9),  0€(0,1),



are contained in the parameter space (0,1). Consider (2) for Py, 8 € (0,1), defined on A
by the densities

pe(z) = (%—Ei) (z) = (1 = ¢) oay(x) + ce*? I4,(2), z€R,

where % < ¢ < 1 and where I is the indicator function of A C R. This means that F,

is a stochastic mixture of the uniform distribution on (0,1) and the uniform distribution
on A,.

Now we are going to introduce a family of contrast functions. Consider for a € [0,1)
the mappings ¢q : {0, 00) — [—00,00) defined by

. 1=t if a € (0,1)
¥alz) = limgjo@a(z) = =Inz ifa=0 (In0 = ~o00).

The expressions
J(2,0) = va(pe(z)), z€R, 8€(0,1),

will be called a-functions. Analogically as in the previous example, one can veri(y that
the process .
0— :-‘Z @a(Pe(Xi))
int
is stochastically continuous. Consequently (A1) holds. The functions 8 — py(z), z € R,
are upper semicontinuous so that & — o, (pe(z)), T € R, are lower semicontinuous. This
implies that (A2) holds. Therefore all a-functions are the contrast functions.

MCE corresponding to a = 0 is the MLE. MCE’s corresponding to a € (0,1) have
been introduced in Vajda (1984) and called a-estimators. It can be shown that in the
present example the MLE, as well as all a-estimators, exist. However, they cannot be
explicitely evaluated as the estimators of Example 1.

4 Condition equivalent with consistency of AMCE’s

Our first result is concerning the existence of AMCE's. Lemma 1 shows in fact more,
namely that the approximate minimum contrast condition (4) can be satisfied not only

in the stated asymptotical stochastic sense, but also deterministically, for all sample sizes
nelN

Lemma 1
For every £, | 0 there exists an estimator 8, such that

f26.) < f3(@)+en P-as, neN.
This estimator is AMCE.



Proof

Let n € N and 03 € © be arbitrary fixed. By (A2) there exists A, € A" of unit Py; a-
probability such that the functions 8 — fJ(x,8), x € A., are lower semicontinuous.
Hence the sets

Bux)={0€6: 2(x,0) S AxO)+e}, xE€ A,
are nonempty and closed. Define for C C © a subset D, = D,(C) of A by
D, = {x € A,: CNB,(x)=8}.

If for every compact C if holds D, € AN A, then, by Theorem 3.9 of Pfanzagl (1969),
there exists an (A" N A,, 8)-measurable mapping ,: Aa — O such that

b.(x) € Ba(x), X € Aa.

Since by (A3) Pyg.a(As) = 1 implies Py, 0(As) = 1, we see that in this case an arbitrary
extension 0, of 8, constant on X™ — A, possesses the desired property f(9.) € fA(O) +
€ P-a.s.

Let C be compact. In order to prove the A™ N A.-measurability of D, = D.(C) take
into account that if X € Aa, then C N B,(x) = § is equivalent with the condition

o(x,8)> f2(x,0) +¢ea, O€C.

But if X € A., the the lower semicontinuous function f3(x,9) attains on compact C its
infimum f2(x,C). Therefore the following formula holds

D, ={x¢€ A.: f2(x,C)> fx,8) + ¢} -

By (A1), for every at most countable class U of open subsets U C © the restrictions
f%(x,U) on A. may be assumed A" N A,-measurable (otherwise it suffices to replace A,
by a convenient .A"-measurable subset Ay C A, of unit Ps;.«-probability). Since © can
be assumed to be contained in every U under consideration, the restriction f3(x,©) on
A, is A" N A,-measurable. By Lemma 3.5 of Pfanzagl (1969), the A" N A,-measurability
_of the restrictions of f%(x,U) on A for all U € U implies the A" N A,-measurability
of the restriction of f°(x,C) on Aa. Thus it follows from the last formula for D, that
D,e AN A, Q.E.D.

Lemma 2

If
nu__q_lop(j:,’(s.,‘) > f2(0)+48)=1 forevery 6,10, (8)

then every AMCE satisfies (1).



Proof

Let us consider AMCE 8, and ¢, | 0 satisfying (4). By (8) there exists 6, | 0, da 2 €n,
such that

Tim P ( I%(Sac) > F2(O) +6,) = 1.
It holds
P (0 € Suc) < P(0a € Sur S2(0a) < S2UO) +48.) +P(2(8a) > [3(0) +64)

The first right-hand term is bounded above by

P (f2(See) S F2(O) +64)
and thus tends to zero. The second right-hand terms tends to zero by (4). Thus (1) holds
Q.E.D.

Lemma 3

If (8) is not satisfied then there exists AMCE 0, not satisfying (1).

Proof
By Lemma 1 there exists AMCE f,and é, } 0 such that

lim P (f2(8) < J2(0) + &) = 1.

The statistical model (.X¥™, A", P30 € S,.) and the restriction of the contrast function
f(z,8) on X ® S, satisly (Al) - (A3). Therefore, by Lemma 1 and by the equivalence
assumption in {A3), there exists an estimator 8% : &A™ — 5, . such that

JoU0) € f2(See) +éa  Peas.

If (8) is not satisfied then there exists a sequence 6, | 0 such that

limsup P (f2(Ssc) € f2(O) 4+ 62) =7 > 0.

n—aon

Putting

n-—

[ 8 A S SO) 46,
é.. otherwise

we obtain an estimator with the probability

P (JR(0a) S f2(8) + ¢4 +64)



P(f2(62) € f3(B) +éu + &)
> P(/2(Ses)+én S fUO) +éu +61) =1

under the condition f2(S,.) < f2(O) + &a, and equal

P20 S SO + 0 +6) — 1

otherwise. In other words, 8, is AMCE. On the other hand, taking into account the
obvious inequalities

P(8a € Suc) 2 P (8 = 8) 2 P (f2(5ec) < JAO) +64),

we see that (1) cannot be satisfied by &, Q.E.D.

Theorem 1

All AMCE's are consistent if and only if (8) holds for all sufficiently small a > 0.

Proof

Clear from Lemmas 2, 3.

5 Conditions sufficient for consistency or inconsistency of all
AMCE’s

If (8) is not satisfied then there exists an inconsistent AMCE. But it might happen that,
at the same time, the MCE exists and is consistent. Such an example was presented in
Vajda (1992). The following result offers a condition sufficient for inconsistency of all
AMCE'’s. This condition is obviously stronger than the coatrary to (8).

Lemma 4
The existence of a consistent AMCE implies that, for all sufficiently small a > 0,

lim P(2(0) > f}(S.)-¢€) =1, >0 (9)
Proof

Let 8, be a consistent AMCE and let £, | 0 satisfy (4). Then, for every ¢ > 0,

{£2(8) < fAS.) — ¢} C AnU {0, ¢ S}



where

An = {S2AO) < fUS.) —¢, bn € S}
C B U {f2(0,) > fa(©) + €n},

B, = {J2©) < fS)—€ fi(6a) S S2(O) +en)
C {S2B) S S2S.) - &, f(Ss) S [2(O) + ¢a)
C {f3S.) S fAS) —e+ea}.

The last event is empty for £, < €. Hence it follows from (5) and from the consistency of
8. that

lim P (£2(6) < J2(Sa) - €) = lim [P(/2(0.) > [(©) +€a) + P(6n ¢ S0)} =0 Q.E.D.

A =00

Theorem 2

The condition
hm P (f2(Sec) > fASa) +8:) =1, 6,10,a>0, (10)

L St

is sufficient for consistency of all AMCE's. The weaker condition
lim P (f2Sac) > fa(Se)—€) =1, €>0,a>0, (11)

is necessary for consistency of at least one AMCE.

Proof

It follows from the inequality f9(S.) 2 f(©) that (10) implies (8) for all sufficiently
small ¢ > 0. Thus the first assertion foliows from Lemma 2. It follows from the inequality
[(Sac) > f2(O) that (9) valid for all sufficiently small ¢ > 0 implies (11). Therefore the
second assertion [ollows from Lemma 4.

Now we present conditions under which (10) holds (Theorem J) and conditions under
which (11) does not hold (Theorem 4). Thus, in a combination with Theorem 2, these
results present conditions sufficient for consistency of all AMCE's, or for inconsistency
of all AMCE's, respectively. All resuits that follow are restricted to observation models
satisfving the following regularity assumtions.

(A4) The observations X = (.X},...,X,) are segments of an infinite stationary sequence
1. X, ... of random variables satisfying the law of large numbers in the sense that,
for every A-measurable function ¢ : & — R with min{E¢(X)*, E¢(X)"} <0



(where X = X, and the integrands are the positive and negative parts of random
variable ¥( X)),

ﬂﬂp(

(A5) Every 8 € © has an open neighborhood By C © such that

@013 w(X) - poEWX)

i=1

> e:) , £€>0 (cf. (5)).

Ef(Bs) > —00, 2€8,

where f(Bs) = fi( Bs) = f(X,By) for X = X, as in (Ad).

Remark 2.

It follows from (AS) and from the inequality f(Bs) < f(8) that Ef(8) > —oo, i.e.
E f(8)~ < oco. Consequently both expectations considered in (6) are under (A3) well-
defined integrals with values in (—00, 00] and (6) implies that E f(fo) is finite. Analogically
if the minimum considered in (A4) is finite then E (X} is well-defined with values in R.
If both E¢(X)* and E$(X)~ are finite then

Ev(X) = E¥(X)" - Ev(X)”

is finite too and the limit relation in (A4) can be reduced to the common form
l'ug P (

Let the stationary sequence X, X3, ... considered in (A4) be independent or, more gen-
erally, ergodic. It is well known that then the last relation of Remark 2 holds as soon as
E ¢(X) is finite. The validity of (A4) can be extended to the case Ey(X) € {—o0, 00}
considered there as follows. Put for everyc>0and z € R

l "
Y W(X) - EN(X)

>e) =0, £>0

Example 3

¥i(2) = ¥(2) o q($(2)) and S (2) = ¥(2) heconl(¥(2)):
Then . .

Iy e vy < LS wi < LS pe

I ACOEESWTEIEEDBACH

=l i=l =1
where the left-hand side tends in P to Ey5(X) when E¢5(X) is finite and the right-
hand side tends in P to Ey¢ (X) when E2(X) is finite. The first case takes place iff

E~(X) > —oo in which case the monotonicity theorem for integrals implies

EYi(X)TEY(X) =00 forct oc.



Analogically the second case takes place iff E¢(X)* < oo in which case
Evs(X) ] EP(X)=-00 forecToo.

It follows from here that .
1
po ; ; P(Xi)
tends in P to E (.X) Q.E.D.
Theorem 3.

Let the observations satis{ly (A4), (A5) and let there exist a compact neighborhood ©o C ©
of 0y such that

lim P( J2(08) > f2(B) +¢) =1 for some £ > 0. (12)
Then (6) implies (10), i.e. also the consistency of all AMCE's.

Proof.

Taking into account Theorem 2 and the inequality f2(S.) € f2(6o) we see that it suffices
to prove that (6) implies (10) with f2(S.) replaced by fR(6). Define

6.290_5.' a>0-

It follows from (12) that 6, # 0. Hence there exists ag > 0 such that 8, # @ for all
a € (0,a0). Let us consider an arbitrary a € (0,a). It obviously holds

Spe C S =0 =85, = (65— Sa) U (8o — S.) C O5U O,

Therefore
L2(Ss.0) = min { F2(05), £2(©.)} .
It follows from here and from (12) that the desired result will be proved il we prove that

lim P(/2(0.) > f2(00) + &) =1 for some &, > 0. (13)
To this end consider the function
®() =Ef(6), 0¢€O.
By Remark 2 this function takes on values in (—o0,c0] and (6) implies that
A ®(9) = $(8) ~ ¥(6o)
is positive on @,. By {A2) and Fatou's lemma

liinf ®(04) > E liminf /(8:) 2 E f(0.) = &(0.)



for a sequence 8, € O converging to §, € ©. Therefore ® and also A® are lower
semicontinuous on ©. Since O, is compact, the assumption

inf A$(0) =0
€6,
implies the existence of a sequence 8 € O, converging to some 0, € ©, such that
lim AQ(O;) =0.
kro0

This and the lower semicontinuity of A & leads to A #(8.) = 0 which contradicts the
positivity of A ® on ©,. Consequently we proved that for every 8 € © it holds

1,
&(0) > $(0o) + 2¢., wheree, = 3 .s&t’. Ad(8) > 0.

Let us now consider an arbitrary & € © and a sequence of open monotonically shrinking
neighborhoods B C © of 8 (i.e. B} D B} D ... and (), By = {8}). By (A2) it holds

ligl_i:lff(ﬂ.) 2 f(8) P-as.

for every sequence 8 € Bj. This implies
liminf (Bf) > f(6) P-acs.

On the other hand the monotonicity of the sequence By implies
f(By) < f(B}) < --- < J(0).

Therefore it holds f(B) 1 f(9) P-a.s. when k — co. It follows from here, from (A5) and
from the monotone convergence theorem for integrals that

Jim E f(B;) = ®(8).
Hence there exist an open neighborhood By of 8 such that
Ef(Bs) > ®(0) — € 2 () +¢., 0€6,.

Since {By : 8 € 6.} is a covering of the compact ,, there exists a finite subcovering
{B.“. ..,B."}. Put
o = B‘, Nneo,.

It holds for every ©* C ©

izl

as LS v e
f2(8) 2 =) f(Xi,©°).



Thus it holds
f(a) = min fu(6) 2 min -):f(x.,ev)

1<jsm Nt

By the law of large numbers assumed in (Ad) it holds for every 1 <3 <m

N OO0

lim P(zpo—Zf(‘(.,G")>tpoEf(’( 9’)—5):1

where ¢2 > 0 is defined by the condition that, for some 2 > 0,
@0 (9(fo) + €) = o B(Bp) — ¢, =2 > 0.
Since at the same time
Ef(X,0/) 2 Ef(X,By) 2 #(00) 4o, 1S5 Sm,
it holds

N =20
(131

It is clear from these results that (13) holds Q.E.D.

fim P( mm go——Z[(X..Q’) > @ od(f) +¢, ) = 1.

If the observations Xy, X3,... are i.i.d. and the parameter space © is compact then
Theorem 3 reduces to Theorem 1.12 of Pfanzagl (1969) with strong consistency replaced
by the weak.

Theorem 4

Let the observations satisfy (Ad), (A5). If there exists a > 0, y < E f(fo) and an estimator
with 8 € S, P-a.s. for all n € N such that

limsup P(fa(9y) <y)>0 (14)

L Sande =4

then (11) does not hold, so that all AMCE's are incosistent.

Proof.

It holds .
. 1 )
PS) =90 fa(S) 200 =3 f(Xi5.).

tmy
By the law of large numbers assumed in (Ad), the right-hand expression tends in proba-
bility to ¢ o E f(.X.S,). By the same argument as in the previous proof,

li{};lEf(.\’. S.) = E f(X, 8).
Therefore if (14) holds then (11) cannot be satisfied Q.E.D.

The next two examples and one corollary illustrate the applicability of Theorems 3
and 4. For simplicity we restrict ourselves to i.i.d. observations.



Example 4

Consider the statistical model of Example 1, under the additional assumption that, for
all 8 € ©, the first moment of distribution Fy is 6, and the second moment is finite. The
Jeast square error contrast function satisfies in this case the relation

8(6) = E(X — 8)! = #(G) + (0 - 6)’, 0 €8,

so that (6) holds. However, the compactness assumption in Theorem 3 does not allow to
establish the consistency of the sample mean in the case © = R by using Theorem 3. We
shall return to this Example in the next section where the compactness will be replaced
by a weaker assumption satisfied by this model.

Example 5

The assumption (6) alone is not sufficient for (10). Indeed, in the statistical model of
Example 2, the functions ®(8) = E f(X,#) can be explicitely evaluated for all contrast
a-functions, a € [0,1), introduced there. It turns out that, for all a under consideration,
®(0) is continuous increasing in the interval Aq,, decreasing in the interval A,, where o
is the solution of the equation

t+e™ =4

in the domain ¢ > 0, and constant in the remaining two intervals {0, to} and
(60 + e=¥%), 1). Thus (6) holds. Nevertheless, as follows from the next result, the corre-
sponding AMCE’s are inconsistent.

Notice that the following condition (15) is stronger than the condition (7) in Exam-
ple 2.
Corollary
If in the statistical model of Example 2

1

then no contrast a-function, a € [0,1), satisfies (11), i.e. all corresponding AMCE’s are
inconsistent.

Proof

We shall prove that the estimator 87 satisfying (14) is the n-th order statistics X(,). Since

for every a € (0,1)
1 -2z°

(44

< -Ingz, x>0,



it suffices to prove

lim P (——Zlnpxm( Xi) < y) 1, y <0. (16)

n=—-0
111

By the definition of ps(z) in Example 2, it holds

- zlnpxhn]( Xi) = - ; ! In(l-¢) + ;l;ln (1 -c+ce""x""))

i=l

> In{l-¢)+ -:;w(x(,.,).

Hence for z = —y ~In(l —=¢) > 0

(-- 2 Inpx,(X) < v) 2 P (,l-;ﬂ’(xtn)) > 3)

" = P(Xpm > $'(n2)).

Consider now a probability measure Q < 4 on R with the uniform density

W= (F) @ = beanan(e),  zeR

Denote by Y = (V},...,Y,) the random vector obtained by replacing Py, in the sample
probability space by Q. It holds for every z > 0

P(Xn>2) 2P (Ym>2)=1=[z(1 =€) +4"

Therefore

(--—ng.,(\’ﬂ y) 21- ¢ (n2)(1- )+

=y

But
)l ~e)+e=1-(1-¢) (1 =9 '(n2))

and, by {15),
1=y '(nz) >

\/_
Thus

¢ nz)(l=-c)+c<l~ 1-c

W

and, consequently,

fim (')t -c) +¢]" =0
This implies (16) Q.E.D.



6 Applications to M-estimators

Let us consider a topological space R of possible values of regressors and denote by Br and
Bg the Borel o-fields of R and R. Let R\, R,... ot E,, E,, ... be mutually independent
stationary and ergodic sequences of R-valued or R-valued random variables defined on the
basic probability space (2,5, P). Finally, let us consider the following general regression
model

Y. = g(Ri,0)+E;, {€N, (17)

where 0, is an unknown parameter from © defined in Sec. 2and g: R®© — R an
arbitrary continuous function.

This nonlinear regression model is a particular case of the general statistical model of
Sec. 2 with

(¥, A)=(R®R, BR®Bzr), Xi=(Y,R), €N,

and

Pon(A) = f,. dPy(x - g(r,0))dQu(r), A€ A", 80, 18)

where P. and Q. are sample distributions of E = (E,,...,E.) and R = (R, ..., R.) on
(R™Bg) and (R",B%) and

g(rio) = (g(rlla)l"‘lg(rl!a))! r= (T[,...,l‘.‘) € 'R'.u 6 € 0.

The observations X = (X1,...,Xa) = (Y5, R1),.-.,(Ya, Ra)) are obviously satisfying
(A4) and (A5) (cf. Example 3). In particular, the marginal probability measure Py= Py,
induced by the random variable X = (Y, R) = (Y}, Ri) on the marginal observation space
(X, A) is given by the formula

Pi(A) = L dP(z - ¢(r,0))dQ(r), A€ A 0€6 (19)

for P = P, and Q = Q, introduced above. If both the errors Ey, Es,... as well as the
regressors Ry, Rz,... are i.i.d. then (2) holds for Py defined by (19).
If P, and the distribution P, x defined on (R", Bg) by

Pax(S)=P.({x+y: y €S}

are measurre-theoretically equivalent for every x € R”, then (A3) holds as well. Let us
restrict ourselves in the sequel to the case where either the equivalence between £, and
P.x takes place, or where all P,x, x € R", are dominated by o-finite measure s,. In
this case all P,,, 8 € ©, are dominated by u. ® Qn and, in view of Remark 1, (A3} may
be considered satisfied as well.



Consider a continuous function p: R — [0, 00), and put
fle, 0y =p(y —g(r,0)), z=(yr)eXx, 0de0. (20)

Then. for every n € IN. f.(x.0) is continuous on .Y™ ® ©. Consequently (A1) and (A2)
hold =0 that (20) defines a contrast function.

The MCE for the contrast function (20) is called an M -estimator (ME), and the
AMCE for (20) is called an asymptotic (or approzimate) M-estimator (AME).

In Example 1 one can find in fact two M-estimators for the linear regression function
g(r,8) = 8, namely the least square error estimator defined by M(z) = z?, and the least
absolute error estimator defined by Al(x) = |z|. Both these A -estimators can be applied
to an arbitrary nonlinear regression model under consideration. Other theoretically and
practically interesting examples of M-estimators of the present type can be found e.g. in
Jureckova {1989).

Replacing the general f,(9) in (8),(10).(11) by

- &
IO = 23 (Y = 9RO = 23 p(Ei = Ag(Ri), (21)
where
Ag(r,0) = g(r.0) — g(r.f5), r€R, 0€80, (22)
one easily obtains corollaries to Theorems 1 and 2 presenting a necessary and sufficient
condition for consistency of all AME’s and a necessary condition for consistency of at
least one AME. We are now goging to formulate a corollary to Theorem 3.
First of all, notice that in the present model the identifiability property (6) reduces to

Ep(FE - Ag(R,0)) >Ep(E), 0€ 0O, 0#86,. (23)
Further, restrict ourselves in the sequel to p nondecreasing in the domain {0, 00)

and nonincreasing in (—20,0). Such function p are typical for applications. Define

p(0o). p(—20) as the corresponding limits and consider a continuous function 3 : [0, co} —
{0, oc] defined by

ly) = min{p(y), p(-y)}.
Clearly, if p = 0o and Ep(£) < 0o then
EplE)
ply)

Hence for every 6 > 0 there exist y > 0 and ¢ > 0 such that
2: + Ep(E)

Aly)

Finally. consider the random field

10 andalsoP(IE|>y)i0 asy{co.
+P(lE| > y) <6 (24)

l n
Zo(r. 0 = =3 Dyail|3g(RO)). y>0,8€8.

where A g is defined by (22).



Theorem 4

Let p be as above with 7 = co and let there exist a compact neighborhood B9 C © of 0
and & > 0 such that

Z:(y) = ’iﬂnefo Zn(ys 8)

satisfies the condition
lim P(22(y) > 6) =1, ¥>0. (25)

Then the identifiability {23) implies (10), i.e. also the consistency of all AME’s.

Proof.

In view of Theorem 3 it suffices to prove (12). To this end take into account that for

every th, ¥z € R ]
Ay) il >2 Il <y

0 otherwise.

o —y2) 2 {

It follows from here for every y > 0 and 8 € ©

) = =Y AE-Bg(RO) (el (21)

=zl
N
2 A D Veneor(129( R ) Lo 1E:D)
2 ly)[Za(y.0) - Walv)l,
where Z,(y,9) is the above defined random field and

Waly) = = 3 Tyl 1ED.

1=l

Therefore the infimum fa(05) of fa(#) for § ¢ O satisfies the relation
J+(65) 2 A [Z2(y) - Wa(y)), y > 0.
It follows from here, from (25) and from the fact that for every y > 0
lim P(|Wa(y) - PUE} > y)| <) =1, €>0, (cf. (A4))
that (12) will be proved if we prove that there exist y > 0 and ¢ > 0 for which
lim P(p(y) {8 = PIE] > y)] > fallo) + ) = L.

By (23) it holds E p( E) < co which implies that there exist y > 0 and ¢ > 0 satisfying
(24). But (24) is equivalent with the inequality

Aly) (6 —P(IE| > y)] 2 Ep(E) + 2



so that it suffices to prove
lim P(Ep(E) + ¢ > fallo)) = 1.

This relation is clear from the identity

o) = + 3" pE) (el (20)

»
=l

and from the law of large numbers (cf. (A4)) Q.E.D.

For compact © it follows from Theorem 4 that the identifiability (23) above aiready
implies the consistency of all AME’s. It follows from Theorem 3 and from the proof of
Theorem 4 that in this case the additional restrictions on p considered in Theorem 4 are
in fact superfluous. Thus for i.i.d. errors Ey, £, ... this result may be considered as an
alternative to the results of Jennrich (1969), Richardson and Bhattacharyya (1986, 1987),
and others cited there. concerning consistency of M-estimators of parameters of nonlinear
regression for the case where the regressors are chosen at random, in a stationary ergod-
ic manner (noncompact O considered in these papers were in fact obtained only by a
compactification). A rigorous extension of consistency of general A{-estimators to typical
noncompact parameter spaces appeared first in Chen and Wu (1988). Relation of our
results to this paper will be discussed later (cf. Example 6 below).

Example 5

Let p{r) = % EE = 0. and EE? = ¢? < oc. Then the identifiability reduces to the

condition

PAg(R.0)>0)>0 0€0O. 8#0,.

It is interesting that if O is not compact then a stronger condition on the complement
9. namely

P(|Agi .0 >y} > & 0 € Q. for some §>0and all y >0,

is still too weak to imply (23). It implies only

lim P(Z.(n.0)> 6 =1, 0€ 0, lorsomeé>0andally>0. (26)

i —

However in some special cases, e.g. in the linear case considered in Example 6 below,
(26) implies (23).

Now we formulate an alternative of Theorem | for the case where ji{co) < oc.



Theorem 5

Let p be as above with E p( £) < p{00) < co and let there exist a compact neighborhood
Qo C O of 8 such that Z%(y) defined in Theorem 4 satisfies the coudition

“ljng(Zf(y)>6)= 1, y>0,0<é<l. (27)

Then the identifiability (23) implies (10), i.e. also the consistency of all AME's.

Proof.

The only point which differs from the previous case is that for p(cc) < oo one cannot
prove (24) for every & > 0. Indeed, in this case it holds

Ep(E) . Ep(E) Ep(E)

~ — as 0o, where 0 < — <1,
Ay Ao ! f ploc)
so that (24) can be established only for

ErlE) 5<1.

p(o0)

Thus, one can assert only that there exist y > 0, € > 0 and 0 < § < 1 such that (24)
holds. However, if the stronger condition (27) replaces (25) then the proof can be carried
out exactly the same way as in the previous case.

In Theorem 4 and 5 we have used an idea of Chen and Wu (1938). They considered
the linear regression considered in the next example with i.i.d. errors and i.i. d. random
regressors, and were able to establish consistency results for noncompact parameter spaces
© by using similar relations as (24). In the framework of the general sufficient condition
formulated by Theorem 3, their idea finds a prepared general context and can thus be
presented with an extremal simplicity and transparency, and with a greater universality.

Note also that the results for functions p considered in Theorems 4 and 3 seem to be
much more valuable than the recent results of Bai, Rao and Wu (1992) formulated for
convex functions p since the nonconvex functlions p are quite common in the theory as
well as in applications (cf. e.g. Juretkova (1989)).

Example 6

Put © = R”*!, R = R®, and consider the points § € R**' and r € R” as row vectors.
Let g(r,8) be linear in the sense

g(r.0) =a+rp,

where o denotes the first coordinate of @ and 3 the transposed vector of the remaining

coordinates (i.e. r 3 denotes the scalar product of vectors r and J). In this case it suffices



to consider f, ad the zero vector and the closed spheres ©g centered at zero. The linearity
aliows to replace the minimization over 8§ in the definition of Z%(y) by the minimization
over the surface of nnit sphere. Since this surface is compact, (25} is in this case equivalent
with (20). The condition (25) can thus be replaced by

Pla+ AR#£0)>0 for(a,f)#0
and the condition (27) by
Pa+BR#0)=1 for(a,B)#0.

These conditions are figuring as (2.1) and (2.2) in Theorem 1 of Chen and Wu (1988).
Thus in the linear case our Theorems 4 and 5 reduce to a generalization of that Theorem
to stationary and ergodic errors and regressors.
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