ON STATISTICAL METHODS FOR SURVIVAL DATA ANALYSIS

JAN HURT

ABSTRACT. In the first part the basic probability and statistical concepts needed in survival data
analysis are reviewed. The second part is devoted to parametric statistical inference, particularly to
Weibull model. In the third part, recent nonparametric results are discussed. The fourth part deals
with some aspects of using selected statistical packages for survival data processing. Some of new
trends and the state of art are mentioned in the fifth part.

1. INTRODUCTION

In what follows we will suppose that X is a lifetime or survival time, that is, X is a non-
negative! random variable possessing an absolutely continuous distribution function Fx, survival
function Ry = 1—Fy, Lebesgue density fx, and the corresponding hazard rate function rx(z:) =

fx(z)/Rx(z) defined for all z such that Rx(z) > 0. Furthermore, let Ax(z) = f; Ty (t)dt denote
the cumulative hazard rate?. We just mention two important relationships concerning the hazard
rate:

1
. = lim — < X >
r,(x) AxgonP(.t <X<z+A|X 21)

Rx(z) = exp{-/o re(t)dt} = exp{—Ax(z)}.

The purpose of this paper is to present selected statistical methods for censored samples.
This is a common situation in survival analysis problems. We will use the model of random
censorship where the data are censored from the right. This type of censorship is often met in
many applications, especially in clinical research or in life testing of complex technical systems.
Together with the survival time X' we will consider another nonnegative random variable T called
time censor. Under the random censorship setup we can only observe the pair

W =min(X,T) I={X<T}=I{W=X}

It means that we observe either death, i. e., the survival time X, or we know that an individual
Las survived at least time T. Also an important piece of information is in I - we know what has
happened first. In the next we will suppose that the distribution of T is absolutely continuous
and that

X and T are independent.

Suppose that X,..., X, are true (hypothetical, not all observable) survival times of n indi-
viduals censored by independent identically distributed (i.i.d.) random variables T},..., T, from
the right. The experiment thus results in observing n pairs

(1.1) (Wi D)ooy (Way Ia)

'The only exception will he Example 11.1.5 dealing with the extreme value distribution.
YIn many applications the cumulative hazard rate becomes now more popular and more often used than the
hazard rate.
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where W; = min(X,,Tj), I; = I{X; < T}, j =1,...,n (I.1) is a (complete) two-dimensiona
random sample. Let us use the symbols F, R, f,r introduced above, with corresponding indices.
also for forthcoming random variables. Due to the independence of X and T we have

(1.2) Rw(w) = 1 - Fw(w) = Fx(w)Fr(w)

Obviously, Z;"=1 I; represents the number of uncensored observations and nEl} = nP(X < T
is the expected number of uncensored observations.
It is not difficult to show that the join distribution of (W), I)) possesses the density

(L3) h(w,i) = [fx(w)Rr(w)l'{fr(w)Rx (w)]'", =01, w20

with respect to Lebesgue x counting product measure.

In parametric inference a natural question arises about the distribution of the time censor I’
There are good both theoretical and practical reasons to adopt the KozioL AND GREEN model «~
random censorship (Koziol and Green, 1976) under which it is assumed that there is a nonnegativ:
constant ¥ such that

(1.4) Rr = R}

Formally, ¥y = 0 corresponds to the case of no censoring — we observe all survival times. Let u-
denote
p=P(X < T),

the expected ratio of uncensored observations.

Remark I.1. Under the Koziol-Green model the density (1.3) becomes
h(w,i) = fx(w)R}+'™", i=0,1, w20.

Theorem I.1. If p € (0,1) we have

1 " 1 1
=T R =R P r = =Ty, \ '="'A.'|
P=1+7% W X0 Tw T g AW = TAX
1 hi
fw = ;R:\‘fx’ rr =y, AT =iy

Proof. See (Herbst, 1992a), e.g. O
Note that the family of distributions generated by hazard rates

(1.5) r(se)=eory(.), >0

is sometimes called Lehmann or proportional hazards family based on r,. (Cox and Oakes, 1984 .

Theorem 1.2 (Characterization of the Koziol-Green model). There is a ¥ > 0 such that (1.4
holds iff W; and I; are independent, j = 1,...,n.

Proof. Despite the result can be found in (Chen, Hollander and Langberg, 1982). the correc:
proof comes from (Herbst, 1992a). In loc. cit. the proof is given even without assuming Fy an:
Fr absolutely continuous. O

Another characterization of the Koziol-Green model can be also found in (Herbst, 1992a):

Theorem 1.3. There is ay > 0 such that (1.4) holds iff the conditional distributions L(W, | I, -
0) and L(W, |1, = 1) are identical.



II. PARAMETRIC INFERENCE

With the exception of the best unbiased (=minimum variance unbiased) estimator (BUE) of
the hazard rate of an exponential distribution under Koziol-Green model of random censorship,
BUE’s are not known for survival characteristics. Therefore, the parametric inference is mainly
based on the principle of maximum likelihood and on Bayesian inference.

[1.1. Maximum likelihood

Suppose that fy depends on an unknown (possibly vector) parameter 6, and fr depends on
8,. Denote 8 = (8,,8,), 8, = (011,-..,61x). Let us further denote

={j: ;=1 C={j:;=0}

the sets of uncensored and censored observations, respectively. The likelihood function based on
sample (I1.1) i1s then

(ILLY) L(8) = [ fx(W;:00) [] Rx(Wy;8:) T[] Rr(W;i82) [] 7r(W;i 62)

Jevu J€C JEV jec
which can be written in the form of the product of sub-likelihood functions:
L(8) = Ly(81) L2(62).

We may look on 8. as on a nuisance parameter. In practice it is convenient to work with the
logarithm of the sublikelihood

(11.1.2) €,(0,) =1InL,(8,).
Assuming the differentiability of (II.1.2), the maximum likelihood equations read

0¢,(6,)
69!:

(11.1.3) =0, i=1,...,k

Usually these equations must be solve numerically. Note that the solution to (I11.1.3) does not
depend on the nuisance distribution Fr. We bring up three useful approaches to the inference.

(i) Asymptotics of maximum likelihood. The inference is based on the asymptotic argument
for maximum likelihood estimation under general regularity conditions:

(I1.1.4) Vn(0 - 8) -2 N©,J71(8)) as n — oo,
where J(8) is the Fisher information matrix with the elements

& n h(W, I;8)
50,00, '

(11.1.5) J,,(8) = —E ij=1,...,dim 8.

If there is no functional dependence between 8, and 8, then the Fisher information matrix takes
the form

(11.1.6) J(8) = (J'(Oo') 12?02))



and hence the inverse has the same form. Note, however, that J;(8,) depends on the nuisance
distribution. In this case,

(IL1.7) V(8 - 8,) 2 N(0,J7'(8,)) as n — oo

Usually the information matrix is not known. To make the inference we need an estimate for it
There are two natural ways to do so. First, we can calculate the estimate 8 and substitute it into
J(8). Hence the resulting estimate is J(a) Since the explicit formulas for the elements of the
Fisher information are often rather complex expressions, this approach usually requires numenca!
integration. The second method is more optimistic from the computational point of view. It
simply estimates the expected value in (I1.1.5) by its sample counterpart, the sample mean:

— 1 <= 0 ln h(W,, I; 9) - . .
(11.1.8) J.,(O)_—;Z 56,50, =qes iy, ij=1,...,dim8.

=1

We will denote this matrix as J.
(ii) Likelihood ratio test. Denote {(8) = InL(@). Let the null hypothesis be Hy : 6, =

Gio) where 050) is a hypothetical value. Suppose that 0;0) is the maximum likelihood estimate

calculated from the likelihood equations where 0§0) has been substituted instead of 8,. Under H,
the statistic

—

(I1.1.9) Wir(8)") = 2(e(8) - €8, 8")]

has approximately a y?- distribution on dim8; degrees of freedom. The same argument may
also be applied if some of the parameters 8, are nuisance. Obviously, in case of no functiona!
dependence between &y and 8,, (11.1.9) reduces to

(IL.1.10) Wer(8,") = 2(6,(8)) - £4(81")]

(iii) Wald test. Let J-1 be the inverse of the matrix with the elements defined in (I1.1.8) an
let K, be the leading (k¥ x k) submatrix of it. Then the Wald statistic

~ T -~
(IL1.11) wel”)y=n@, -6\") K74, -6")

has again approximately a x2?- distribution on dim 8, degrees of freedom.

Example I1.1.1. Exponential distribution. Suppose L(.\') = Exp(#) with the survival func
tion
. exp(—z/8) z >0,
R =
x(z) { y £ <0,

The maximun likelihood estimate of 8 is

TrW,
Z;: 1 ‘[]

provided that there is at least one uncensored observation. The maximum likelihood estimate ot
the survival function at a given mission time z > 0 is

(11.1.12) 6=

(11.1.13) Ry(z) = exp(—-2/8). 0



Theorem II.1.1. For (I1.1.12) we have

- D 92
v/n(8 - 8) — N(0, m)

as n = oo
For (11.1.13) and a fixed £ > 0 we have

Va(Rx(z) - Rx(2)) 2 N(0,(5)*Rx(z)/P(X <T)) a5 n = oo
Proof. Observe that

oQ o0 - )
EW = / R (w)dw = / Rx(w)Rr(w)dw = / e™*/* Ry(w)dw,
0 0

0

P(X <T) = / / dFx(z)dFr(t) = % / =% Re(w)dw
<t 0
so that . EW
= BX<T)

Hence E(W — 8I) = 0 and var (W — 8I) = E(W - 0I)*. Since
EI’ = P(X <T), EWI= /0.» /‘0 | wihw. it do = /owwfx(w)RT(w)dw,
(d1 standing for counting measure)
EW? =2 /0 ~ w R(w)dw = 28 /0 " w fx(w)Rr(w)dw,

we get var (IV — 01) = 62P(X < T). Let W and T be the means of W;'s and I;'s, respectively.

Then
~ W EW WEI-1EW

From the central limit theorem for i.i.d. random variables with positive and finite variance it
follows that

VA(IPEI = TEW) -2+ N(0,var (WEI -~ [EW)) as n — oco.
Since 1/(TEI) - 1/(EI)? = 1/P}.X < T) we have

92

7 2 vlo L var(w —8n) = N(©O. ———
\/5(9_9)._“\;(0, var (W 91))_N(0,P(X<T)).

(ETY

To prove the asymptotic normality of IAI,\' it is sufficient to employ Theorem 6a.2 (i) (Rao,
1973). O

A more detailed asymptaotic analysis of the estimates may be performed by methods in (Hurt,
1036). .



Remark I1.1.1. Type I censoring (or time censoring) is a particular case of random censorshiyp.
Instead of a random time censor we suppose that the time censor is a fixed constant 7 > 0, say
The results for random censorship can almost literally be transferred to Type I censorship. Th:
is the analogue of the last Theorem:

92

(IL1.14) va(@-6 2N (o, =779

) as n — oo.
Remark IL.1.2. In practice we estimate P(X <T) by p = LY =11 Hence

vnp (6 -8)/8 2 N(0,1).

Theorem I1.1.2. Assume that £(X,) = Exp(6) and L(T\) = Exp(8/v) (the Koziol-Gree::
model). Then

V(8 - 6) =+ N(0,6*(1+7)) as n—oo

and

n-— 1 Z;:l IJ
n Z;’l:l W)

is the best unbiased estimate of the hazard rate A = 6},

(11.1.15) A=

Proof. The asymptotic normality is a simple consequence of the previous Theorem. To see tha*
(11.1.15) is unbiased , it suffices to calculate EJ = n/(1 +v), EW™! = (1 +v)/(n — 1) and take
into account that I, W are independent under Koziol-Green model. Further, (3_7_, 1;, 3 7_, W)}
is the complete sufficient statistic for (&, ), hence the result. O

Example I1.1.2. Proportional hazards. Similarly as in (1.5) let us consider a proportionai
hazards family

(11.1.16) r(z;A) = Ary(2), A>0

where A is an unknown parameter and r(z) is known so called baseline hazard rate. The baselin-
cumulative hazard rate is Ao(z) = f: ro(t)dt with the corresponding survival function

R(z;A) = ezp{-Mo(z)}.

Hence

Ao(2) = —:1\- In R(z; A).

It is well known that if X has the survival function R(z) then L{(R(X)) = R(0,1), where R(0,1"
denotes the uniform distribution on (0,1). Hence

C (—%ln R(X;A)) = Exp(i).

This is an important fact since instead of processing the original data .X';’s we can treat th
transformed data A¢(X;)'s which follow the exponential distribution with unknown A. Hene
we can apply the above methods. It is also possible to use this fact to separate aspects of th
shapes of the marginal distributions of X, ¥ when constructing a dependence measure: instea
of cov(.X,Y) use cov(Ax(z),Ay(y)). See (Prentice and Cai, 1992) for details. ¢



Example I1.1.3. Three-parameter Weibull distribution. Suppose £(X) = W(a, 8, §) with
the survival function

(1L1.17) Rx(z) = {

The following result may be found in (Andél M., 1992):

Theorem I1.1.3. Suppose that at least one observation is uncensored. Then the maximum
likelihood estimates &, 8, § of the parameters in (I11.1.17) may be found as a solution to the
equations

(11.1.18) a=min{W;:jeU},
(IL119) = + —— ):ln(w -a)-
I L e
Z,eU(W —a)"’ln(W —a)+E,eD(W, —a)pln(W —a)
Z)GU (W —a)ﬂ +E;ED(W - A)ﬂ '
1/8

(11.1.20) § = [ (Z(W —a)"+Z(W -a)’)] :

I JEVU JED

where D = {j : I; = 0,W; 2 &}, and |U| = 17, I; is the number of uncensored observations.
Proof. See loc. cit. O

Remark I1.1.3. It is important to emphasize that actually only one from the above equations,
e., (I1.1.19), is to be solved numerically.

Remark I1.1.4. Note that for the two-parameter Weibull distribution with a = 0, (I1.1.19) and
(I1.1.20) are the usual maximum likelihood equations if we put @ = 0. The sums over both U and
D are simply sums over all observations.

Example II.1.4. Weibull distribution under Koziol-Green model. Suppose £(X) =
W(8, 3} with the survival function

[ exp{-(5)} z>0,
(11.1.21) Rx(z) = { 1 r <o,

If we assume the Koziol-Green model, the distribution of the time censor is also Weibull,
W(8y~1/8,3). Altogether we have three unknown parameters. 0

Theorem II.1.4. Suppose that at least one observation is uncensored. Then the maximum

likelihood estimates 8, 3 of the parameters in (1I.1.21) under the Koziol-Green model may be
found as a solution to the equations

W"l W;
(I1.1.22 1, lz W, - L= W ln
g nia Tra W’



(11.1.23) =
n 1/8
~ |1+% F]
(11.1.24) 6= [TZW,.] :
=1

In this case, 7 is the maximum likelihood estimate of .

Proof. Recall the form of the likelihood from Remark I.1. See (Andél M., 1992) for further
details. O

The following Theorem gives an explicit form of the Fisher information matrix needed for th«
asymptotics of the maximum likelihood estimates .

Theorem I1.1.5. Denote a := I''(2) —In(1+v). Under the assumptions of the previous Theorem
the Fisher information matrix takes the form

(I1.1.25) J(6,8,v)=DAD
where
e
and
1 ~a -1
(11.1.27) A=|-a a®*+7%/6 a |.
-1 a 1+

Proof. The Fisher information matrix may be simply calculated using the facts that

(I1.1.28) c (( %’-) ﬁ) = Exp(p),

['(1) = —=C (the Euler constant), I''(1} = -'3: + C%. Also the relationships I'(2) = 1 - C.
I'"(2) =I"(1) 4+ 2I'(1) simplify the calculations. O

Example I1.1.5. Extreme value distribution. We say that a random variable X follows the
extreme value distribution type I with parameters A > 0 and 8 > 0, symbolically Extrem(), 3.
if its survival function is

(IL.1.29) Rx(z) = exp{~2e?*}, ze R

Suppose L(Y) = W(4, 8) with the survival function (11.1.21). Put X = InY, A = 8-2. Then
L(X) = Extrem(A, 8). Obviously,

1 T
EX = —E(ln,\ + C), vara = 6[72-

Under the Koziol-Green model, £(T) = Extrem(yA, 8). 0



Theorem II1.1.8. Suppose that at least one observation is uncensored. Then the maximum
likelihood estimates 3, A of the parameters of Extrem(), 3) under the Koziol-Green model may
be found as a solution to the equations

1 1o Z'L] AW Ww;
(11.1.30 | Loy &=l 7
) 6 n fv;:l ] Z;‘l=1 cﬂw,'
.~ n=|U|
11.1.31 5= ,
( ) 7]
(11.1.32) 3= n

(1+F) Ty FWi

In this case, 5 is the maximum likelihood estimate of 7. Denote a := I'(2) ~ In[A(y +1)]. The
Fisher information matrix takes the form

(I1.1.33) J(\B,7)=DAD
where
(11.1.34) D= dlag(,\ ﬂ,p)
and

1 a 1
(11.1.35) A=(a a*+7x¥6 a

1 a 1+ !;

Proof. The proof is analogous to the proof of the previous Theorem. See (Hurt et al., 1991) for
details. O

11.2. Bayesian estimation

Since processes we study in survival analysis are rather evolutionary than revolutionary, a prior
knowledge of the previous survival characteristics may be utilized for the estimating of the current
ones. There is a lot of papers concerning Bayesian inference for the exponential distribution but
little is known for perhaps the most interesting case of the Weibull distribution. At least the
results gained are not too satisfactory for practice. The reason sounds naturally. Due to the
simple form of the sufficient statistic for the unknown parameter, the inference under exponential
distribution often leads to explicit formulee. For the Weibull distribution, the only sufficient
statistic for all two or three parameters is the whole sample. Moreover, no natural conjugate
family of prior distributions is available’ (Barlow, Proschan 1988). Some suggestions may be
found in (Martz, Waller 1982). Most recent papers do not carry too much novelty.

For the sake of simplicity we deal with a scalar parameter only. Suppose that {F(.;01)}s,co
is a family of absolutely continuous survival distributions in question. The unknown parameter

3\Ve do not consider the trivial case § known.



8, is supposed to be a random variable with the Lebesgue density g(t). From the Bayes theorem
it follows that the a posteriori density of 8, is

Ly(61)q(61)
Jo La(t)a(t)dt’

(I1.2.1) ¥(6: [(11.1)) =

The loss function 1(01,8:) is & function defined on @ x @ where @ is a decision space, the space
of reasonable estimators in our case. The most common is weighted quadratic loss function

(11.2.2) 1(81,61) = w(61 )(61 - 6

where w is properly chosen weight function. It is well-known that under general conditions the
Bayes estimator minimizing the Bayes risk

(I1.2.3) B(6,) = / w(t)(t — 61)2(¢ | (IL1))dt
e

is

(11.2.4) i = fstw(f)!f)(tl(n.l))dt

YT T wt)o(t[(IL1))de.

Example I1.2.1.Exponential distribution. Assume that the survival time is distributed as
Exp(1/1). The natural conjugate prior for the hazard rate ) is the gamma-distribution with the
a priori parameters a and p, say, i. e., with the a priori density

(11.2.5) o(t) = F—‘E‘%c'-'e-“ t>0.

The a posteriori distribution of A under random censorship possesses the density
(11.2.6) Y(A|(IL1)) = constALim=t fi+P=1g =ML/ Wite)

which is the gamma density with parameters 3_°_, W; +a and 3_7_, I; + p. The Bayes estimate
of A under the quadratic loss function with the constant weight function is

Y Z"‘zl Ii + p
(11.2.7) N =t TP
Z,‘=1 w) +a

The a priori density of § = } corresponding to (I1.2.5) is

1
11.2.8 = —agPe~t/tP-!
( ) g,(t) F(p)a e %t , t>0

which is the density of the inverted gamma distribution with parameters a and p and the ex-
pectation ;f_—l for p > 1. Hence the a posteriori distribution of 8 is also the inverted gamma

distribution with parameters 37, W; +a and 3°_, I; + p so that the Bayes estimate of § is

n
j=1

E;:l WJ +a

11.2.9 = = .
( ) Zj:l IJ +p- 1




Let us turn to the estimation of the survival function Rx(z;A) = e¢~2* at the fixed mission time
. Without any loss of generality we can set z := 1 otherwise we can change the time scale. The

a priori density of R = ¢ is

aP

(11.2.10) qg(r) = 0 re~Y=Inr)"!,  0<r<l
so that the a posteriori density of R is
(IL2.11) ¢p(r) =
1 (i W, + a) Lot Iﬁ’r T W +--—l(_ Inr) Liet litr—1
F(Z;‘zl I; +p) =1 ! '

0<r<l.

Therefore the Bayes estimate of R is

Zn lW,-+a :j‘-l Ii+p
— | &= .
(2,"-.. W,-+a+1)

(11.2.12) R

The similar approach may also be used in estimating from the counting processes and for
repairable systems characteristics (Franz, 1990). In terms of the reliability parameter r (corre-
sponding to the estimated reliability R = ¢~ ), the weighted quadratic loss function becomes

(11.1.13) Hr,P) =w(r)r-7 0&rF<l.

By a suitable choice of the weight function w(r) we can put emphasis on the tails of R. One
possible choice leading to the explicit form of the estimators is w(r) = r~®(=lnr)"? a > 0,
3 > 0. It is obvious that w is U-shaped. Higher values of a or J give greater importance to values
R close to 0 or 1, respectively. For a = 0.5, 8 = 0.4 or a = 0.62, 8 = 0.5 (e.g.), the weight
function is almost symmetric. The Bayes estimate of R under the loss function (I1.2.13) is

ey Wita—a Yl alitr-8 n
| (:z,:-n W;‘+a-—a+l) Z,‘-x Wj +a-a>0
R *wlitp—8>0,
(I1.2.14) R = 4 Limili
1 E;“-llj'*‘P"ﬂSO,
0 otherwise. 0

The asymptotic properties of the Bayes estimates are similar to those for the maximum likeli-
hood ones. The development of the asymptotic results is more difficult from the technical point
of view, however. Sometime, a general argument concerning the equivalence of the asymptotic
behaviour of maximum likelihood and Bayes estimates may be utilized.

II1. NONPARAMETRIC INFERENCE

(i) Estimation of the survival function. The most popular estimator of the survival function
is Kaplan-Meier or product limit estimator. This estimator can be obtained as a "nonparametric”
maximum likelihood estimator (Cox, Oakes 1984). Assume that W(;),..., W(,) are order statistics



of the sample W), ..., W,, Wig) = 0. Let [(;) be the indicator of the event {W(,) = Xy} The
Kaplan-Meier estimate of the survival function is defined as

-\ 1)
- =l z < W,
(1IL.1) Rim(z) = { j:Wg,gz(" :+l) (n)
0 2 2 W(,‘),

with empty product defined as 1. In case of complete sample the Kaplan-Meier estimator coincides
with the usual empirical distribution function. Little is known about small sample properties.
Asymptotics was first given by (Breslow and Crowley, 1974) with an error in the proof. See
(Csérgé and Horvath L., 1981) for a correct proof and further results.

Theorem IT1.1. Let ¢ be such that Rw(c) > 0. Then

vn(Rem(.) - Rx(.) 2V as n—oo.

in Skorohod D0, ¢] space where V is a zero mean GauBian process with the covariance function

* dRx(z)
1.2 EV(s)V(t) = -Rx(s)R t/————-——-—-—, 0<s <t<ec
(1.2 @VO = -Reix() | iy 0S¢ Stse
Proof. See the references given above. [

Formula (I11.2) has its empirical analogue known as the Greenwood’s formula which serves as
an approximate estimate of the variance of the Kaplan-Meier estimate:

(1L3) var Ricat (2) = R () 3 o j)(I:;j)_j ot

Wy <s

Example II1.1. Making use of this Theorem it can be shown that under the Koziol-Green model
the asymptotic variance (as. var) of Rxm(T) is

(I11.4) as. var (Rrm(z)) = %f"/'(u‘r -1). 0

(ii) Estimation of the cumulative hazard rate. The cumulative hazard rate may be esti-
mated by the Nelson-Aalen estimator

(111.5) Axm(z)= ) —F—.
W) <o n-y+1

Also this estimator can be obtained as a "nonparametric” maximum likelihood estimator.

Theorem II1.2. Let ¢ be such that Rw(c) > 0. Then
VaRkm()=Ax()) U a5 n— .

in Skorohod D|0, c| space where U is a zero mean GauBian process with the covariance function

(111.6) EV(s)V(t) = - /0 R%(-’}%, 0<s <t<c

Proof. See (Andersen et al. 1992). O



Remark III.1. Recall that Ax(z) = —In Rx(z). There is a close connection between Rk and
Awu- Using a Taylor formula we can write

which is the Nelson-Aalen estimator. The left-hand side of (II1.7) is called Peterson estimator of
the cumulative hazard rate. Sometimes

(I11.8) Rn(z) = exp~hxu(@

is called the Nelson estimator of the survival function. If we plot both the Kaplan-Meier and
Nelson estimate of the survival function we can not observe a substantial difference. The only
visible distiction is in the right-hand tail area where (II1.1) lies under (IIL.8).

(iif) Estimation under the Koziol-Green model. Remember the relationship Rx = R},.
Since we dispose of the complete sample of W;'s, we can estimate Rw by the empirical survival
function and p by the relative frequency of uncensored observations and therefore to create the
estimator for R:

(I1L9) Ria(z) = [Rw(a))?

where Rw(z) = & Y H{W; >z} p= 1 ¥, I;. Like the above estimators, (II1.9) is the

n

maximum likelihood estimator in the class of nonparametric estimators restricted to the Koziol-
Green model.

Theorem II1.3. Let ¢ be such that Rx(c) >0 and p € (0,1). Then

Va(Rra() - Rx(\)) =V as n— oo
in Skorohod DI0, c| space where V is a zero mean Gaufian process with the covariance function

2 Fw(s)

(IIL10)  EV(s)V(#) = Rx(s)Rx(t) |P" 5oy

+ p(1-p) In Rw(s) In Rw(t)]

0<s <t<e.

Proof. See (Herbst, 1991). O

The cumulative hazard rate may be estimated in the same way by

1

(111.11) Akc(z)=5F Y. T

W<z



Theorem II1.4. Let ¢ be such that Rx(c) > 0 and p € (0,1). Then

. VaRke() - Ax(.)) = Z as n— oo.
in Skorohod D|0, c| space where Z is a zero mean GauBian process with the covariance function

(1I1.12) E Z(s)2(t) = p’%%:—; +p(1 - p) In Rw(s) In Rw(t),

0<s <t<e
Proof. See (Andél M., 1992). O

Remtirk I11.2. It is not difficult to show that both I’ixa, A kG have greater asymptotic efficiency
than Ry um, Axm, respectively. This assertion is based on an interesting inequality

I lm’r<1, Vre(0,1).

1—r
(iv) Estimation of moments. The r'*-moment about the origin of a nonnegative random
variable with the survival function Rx may be calculated utilizing the well-known formula

o0
(I11.13) y, = r/ " ' Rx(z)dz.
0

A natural empirical analogue of (IL.1) is obtained by substituting the Kaplan-Meier estimator
instead of Ryx:

o0 n
(II1.14) Wekm = "/ 2 Rm(z)dz =) Rem(Wiizn)) Wiy = Weion)-
0 ;
=1
Despite the asymptotic normality of the last estimate can also be established,it is beyond the
scope of the present paper to formulate precise resuits.

(v) Estimation of moments under the Koziol-Green model. The same idea leads to the
estimate

n
(IIL15) 'y ke = ZRKG(WU-I))[W(I') - Wion) =
=1

j=1

1PIWi) — W-nl-

Also in this case a detailed analysis of the asymptotics is rather complicated. see (Herbst, 1992b.
1992¢).

(vi) Test of fit with the Koziol-Green model. The test of a Kolmogorov-Smirnov type has
been developed by (Herbst 1992a). It is based on characterizations in Theorems 1.2 and L.3.
Define the empirical conditional distribution functions

~ 1
11116 == j S 2,05 =
(IIL16) Fi(2) w.;“""f-“l 1)
and

- 1 z
Il = < 1.1 =0).
(I11.17) Fo(2) n_lUl;I{PV,_x,I, 0)
Denote
(I11.18) An = sup |Fi(z) - Fo(2)]

the Kolmogorov-Smirnov statistic for the conditional empirical distribution functions Fy and £,



Theorem I11.5. If there exists a positive v such that (1.4) is true then for z >0

(I11.19) P(\/MA..S:)-»K(:) as n—s 00

where K(z) = 372 _ (—1)’ exp(-2j*z’) is the Kolmogorov distribution function.

Proof. For the proof see (Herbst 1992a). (3

In loc. cit. the following assertion concerning the eaxact distribution of the test statistic can
be found.

Theorem V1.2, If there exists a positive v such that (I.4) is true then the conditional distribution
L(Aa| |U| = k) is the same as the distribution of the usual Kolmogorov-Smirnov statistic in case
of two independent samples of size k and n — k, respectively.

(vii) Nonparametric estimation of the density and hazard rate. Successfully the kernel-
type estimators are used. Suppose K be a positive symmetric kernel, JK(t)dt = 1. For the
density fx, a kernel-type estimator is

(111.20) Fx(a)=-h3" | " Kl(x - O)/hal dRxcae(t),

where ﬁKM is the Kaplan-Meier estimator. The integral in the last formula may be reduced to
the finite sum in this case. For the hazard rate r,, a kernel-type estimator is

(111.21) P (z) = =h} / ” Kz - )/ha) Bl (1) dRicm(t), dz >0, Rx(z) > 0.

See (Padgett, 1988) and (Tanner and Wong, 1983). For a review of the ideas for complete samples
see ( Antoch, 1986).

IV. PACKAGES

This is only to make some remarks on four packages which were not selected at random at all.
Rather they reflect the situation with available packages in this country.

IV.1. SOLO

There is a part of the package called Survival analysis. As a rule, survival data should enter
as two vectors - the first one containing W/s and the second one containing Ijs. The estimation
module supplies the user with estimates of parameters for exponential, Weibull, Rayleigh, Gamma,
normal, and lognormal distribution as well as the Kaplan-Meier estimate with the cumulative
hazard function. Beware of the parameters! They are often defined in a different way than we
are accustomed to. ‘

The modules Two-Group Nonparametric Tests and Multi-Group Nonparametric Tests contain
analogues to the Wilcoxon and Kruskall-Wallis tests, respectively, for comparing survival distri-
butions. Since neither the tests nor a motivation for them are clearly described in the User’s
Manuals, we will give a heuristic derivation for the two-sample problem here. The ideas involved
are common for all the tests that can be found in the packages mentioned in this paper.

Suppose that we have two samples 1 and 2 of (1.1) type with the sizes n; and ny, respectively:

(IV.1.1) (Wi n),..., (Wi, L)  i=12



If F} and F; are the distribution functions of the samples 1 and 2, respectively, the null hypothesis
is

Ho . F] =F3.

Let Z; < --- < 2 be the ordered (actually) observed distinct survival times from the sample
formed by pooling the samples 1 and 2 together, and let D;; and Y;,, denote the number of
observed survival times and the number of individuals still at risk, respectively, in sample 1 at
time Z, ,{=1,...,L,i=1,2, formally

ng ng
Die=)Y HW}=X],Wj<2Z), Yu=) I{W]2Z]}

j-l j=l

(IV.1.2)

For every ¢ we may create a 2 x 2 contingency table:

Survival Sample 1 Sample 2 Total
Yes 5"; Du D(
No Yie— Dy Yae — Dae Y - D,

Total Yie Yae Y,

As usually, "Survival Yes” means that we have observed a survival time, or better to say, death.
Given Y;¢, the D;; have a binomial distribution with number of trials Y;,. The Fisher exact
test for testing the hypothesis of the equality of binomial parameters in this setting is based on
conditioning on D, and on using the resulting conditional hypergeometric distribution for D..
Under the hypothesis, D, has the conditional expectation

Yie

Eye = Dz—y-l-

and the conditional variance
Y1.Y2¢Ye — Do

Y7 Ye-1

Vie= D,
The test statistic
L (D — E)

9-Z
\/th-lVll

has approximately N(0,1) under the null hypothesis. The statistic (IV.1.3) is the standardized
two-sample logrank statistic. For the two-sample problem, the tests in the packages are based on
statistics of the similar form

(IV.1.3)

L
W=c Z w(Z¢) (D¢ — Eye)

(=1

(IV.1.4)

where c is a normalizing constant and w(.) is a properly chosen weight function which also gives
the name to the test. The reader will find a variety of combinations of the following names:
Peto J., Peto R., Wilcoxon, Gehan, Cox, Mantel, Haenszel, Tarone, Ware, Breslow. Tests differ
in their power with respect to the alternatives. For a lucid explanation see (Miller, 1981). The
multi-group nonparametric tests are based on similar, but inevitably nonlinear statistics which
lead to an approximate chi-squared distribution.



In the Cox’s Proportional Hazards Regression module it is supposed that the hazard rate is of
the form

(IV.1.5) Mz;z) = Ao(z) exp(z'B)

where z is a vector of covariates, 3 is a vector of unknown parameters, and Ao is a baseline
arbitrary hazard rate. Only ranks of the survival times are used to estimate 3.

A simple, but powerful method is given in Censored Regression module, the idea of which
comes from (Schmee, Hahn 1979). In the usual regression model

Y=XB+e,

with Y possibly censored, the censored observations are treated as survival times in the first step
so that we begin with n regression equations

(IV.1.6) W; =28 +¢j, i=1...,n
Denote X = (z,,...,2n)". The initial estimate of B is the usual least squares estimate
B=(X'X)'X'w

where W = (W,,...,W,)'. Based upon this initial fit, the expected survival time for every
censored observation is estimated by

(IV.1.7) w;=z'8, jeC
Let G is an estimate of varﬁ;; = T;cov (B)= jo Considering the j** censored observation as
truncated at W,,
—_ W —W. W -W. _
wan  Taeas(B50) /e (B5H)|, sec

serves as an estimate of the expected survival time based on the truncated normal distribution.
These estimates are introduced in the regression model instead of the original time censors, and the
usual regression procedure is repeated. This procedure is iterated until convergence is achieved.

The last module deals with Probit Analysis.

Résumé: There is a variety of fundamental methods of survival analysis in this package, the
convergence of methods which need iterations is reliable enough, and with a basic knowledge of
the SOLO system handling the survival analysis modules is almost effortless. Despite the 'SOLO
Survival Analysis’ Manual is not a product of professional statisticians, the author recommends
SOLO as a very comfortable tool in this field.

IV.2. BMDP

Since the methods used in this package are briefly but rigorously described in the Appendix
to the Manual, we only make some comments. A big part of the corresponding programme
1L is devoted to nonparametric analysis based on life table computations and on product-limit
computations. Tests for comparing the distributions allow data to be stratified and organized in
ordered treatment groups. Further methods included in the package are Cox proportional hazards
model and accelerated failure time model which will be discussed in the next Section.



IV.3. SAS

Algorithms for statistical analysis of survival data are contained in SAS/STAT LIFEREG
Procedure. Data may be right-, left-, or interval-censored. Everything is based on an accelerated
failure time model in which it is assumed that the survival time X can be expressed in the form

(Iv.3.1) X = exp(z'B)Xo

where z is the vector of covariates, § a vector of unknown parameters, and X is the survival
time sampled from the baseline distribution with zero covariates. The baseline distribution is
supposed to be of the known form with unknown parameters. This is important since by setting
all covariates equal to zero, we may obtain estimates of the parameters of the baseline distribution.
Optional logarithmic transformation Y = In X gives the linear model

(1V.3.2) Y=28+Y

where Yy = In X, plays the role of the error term. The user can choose extreme value, normal.
and/or logistic baseline distribution for Yy in (IV.3.2). After the logarithmic transform, he can
choose among exponential, Weibull, log-normal, and log-logistic distributions for Xy in (IV.3.1).
The parameters are estimated by the maximum likelihood method applied to {IV.3.2) described
above. As common with SAS, it offers a lot of options for input, output, and computations.

IV.4. SPSS

Only life table methods are in SPSS . The results are summarized in tables containing the
empirical densities, hazard rates, and survival functions. Also a comparison of survival functions
is possible.

V. CONCLUDING REMARKS

This is a non-representative selection of some trends in the feld, which are, by the author’s
opinion, prospective for further research and applications.

(i) Product-integration. A unifying theory of product-integration with survival analysis appli-
cations has been given by (Gill, Johansen 1990). The theory is based on the product-integral which
generalized the discrete product operator Il in a similar way as the usual integral [ generalizes th
operator ¥_. Since the Kaplan-Meier estimator may be expressed in terms of product-integral, the
properties of it can be derived by making use of the general results valid for the product-integrai.

(i) Counting processes and the martingale approach. "The martingale approach hax
proved remarkably successful in yielding results about statistical methods for many problems
arising in censored data. Martingale methods can be used to obtain simple expressions for the
moments of complicated statistics, to calculate and verify asymptotic distributions for test stu-
tistics and estimators, to examine the operating characteristics of nonparametric testing method
‘and semiparametric censored data regression methods, and even provide a basis for graphici
diagnostics in model building with counting process data.” (Fleming and Harrington, 1991)

Here we briefly sketch the counting process approach to the cumulative hazard rate. The first
step is to construct an integral representation for statistics calculated from censored data. Fer
j=1,...,n define

(Vl) NJ‘(I) = I{‘V, < I,I,’ = 1}, YJ(J:) = I{‘«V) > ;}‘

N =iN,, Y = ZY)‘
1=1



Using this notation, the Nelson-Aalen estimator of A (here as well as in the sequel we omit index
£) may be expressed as

, ~ = I{Y(t) >0}

(V.2) A(z) = [) A=t aN ()

(0/0 = 0, by definition). (V.3) "estimates” the random quantity

(V.3) A*(z) = /‘ I{Y(t) > 0}r(t)dt.
0

We have

(V.4) Az)-A(z) =
/ THY®) >0} vy - v(er(t)de) =

Y(t)
S ORI
Z,._lfo v o

where
(V.5) M) = Ny(a) = [ ¥ dMD = Nie) = 4i(a),

say. The process M; is a martingale, and A; is called compensator. The martingale approach
to statistical models for counting processes is useful only if the compensator is known or can be
computed (at least theoretically). Denote AA(z) = A(z) — A(z-). The following assertions may
be found in (Fleming and Harrington, 1991):

(V.6) EA(z) = EA%(z),

(V.7) EX(z) - EA(z) = - /0 " PMW < )dA(t) 2 —PMW < 2)A(z),

(V.8) o3(z) = ElVn{A(z) - A@)}]? =

F HY() >0},
E[n /o St AA(t)}dA(t)].

The last quantity should approach
2

(V.9) ol(z) = / P~Y(W 2 t)[1 — AA(t)|dA(2)
0

for large n. Further, En[A*(z) — A(z)]? — 0 asn — if P(W 2z)>0,and
~ 1l [ n

V. - = — 2 : —dM;

(V.10) \/’T[A(I) A(I)] ‘/"l port /0 Y(f) J(‘)

where M,'s are independent identically distributed. Since n/Y(z) — 1/P(W 2 z), we might
expect that (V.10) is approximately distributed as N(0,0%(z)) for large n which is indeed the
case,



(iii) Left truncated right censored data. In this context, left truncation is considered in
a slightly different way than usually. Left truncation by ¢; meaans that X, is only observable if
X; 2 t;. The data consist of n observations

(X7, ... (X3,t0) with X7 >¢9.

We can regard the observed sample as being generating by a larger sample of independent random
variables
(Xj,t5), i=1,...,m(n)

where M(n) = inf{m : 3°°_, I{X} 2t}} = n}. In (Lynden-Bell, 1971), an analogue to the
Kaplan-Meier estimator has been derived. Such a kind of experiment has applications in astron-
omy when small objects are not observed. The properties similar to those of the Kaplan-Meier
estimator have been studied by many authors. Afterwards, the right censoring of the data was also
considered and the research proceeds in the same way as for the usual Kaplan-Meier estimator.
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