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Introduction

Graphical models represent multivariate interaction by means of a finite graph, in which nodes represent
variables and edges represent association; more precisely, the absence of an edge represents a conditional
independence relationship. Such graphs were introduced by Darroch, Lauritzen and Speed (1980), where
the variables are discrete; their continuous counterpart was examined by Speed and Kiiveri (1986); and
more recently, the mixed discrete and continuous case has been discussed by Lauritzen and Wermuth
(1984, 1989) and generalised by Edwards (1989). A theory for directed independence graphs, based on the
ideas of Wermuth and Lauritzen (1983), and Kiiveri, Speed and Carlin (1984), is developed by limiting
the conditioning set to the ‘past’. This material is very much related to the original path analysis ideas
of Sewell Wright (1921, 1923).

The essential ingredients of a theory of graphical models are the notion of conditional independence,
standard graph theory, the conditional Gaussian distribution, and maximum likelihood estimation. Our
intention is to outline the basic theory, without derivation, and to report some practical applications of
the techniques that are to appear in Whittaker (1990). The positive benefits that graphical modelling
techniques bring to data analysis are: a probability framework to assess interaction, phrased in terms of
the original untransformed variables; visual display; a framework which naturally includes both discrete

and continuous variables; and a statistical model to assess goodness of fit.

Conditional Independence

Let X denote a k-dimensional random vector, X = (X1, X2,...,Xk) where X; is the i-th coordinate of
X. Put K = {1,2,...,k}, the index set consisting of the full set of suffices, and let a = {i1,%2,...,1p}
denote an arbitrary subset of K. Define the random vector X, as the ordered tuple

Xe = (X,'I,X,'z,.. .,Xip) = (X,'; i€ G).

Then X,u; and Xans are well-defined, and so are other set operations, in particular, X\ (3} denotes the
the sub-vector of X obtained by excluding X;.

The density function f, is defined as the marginal density function of X, for a C K and, if @ and b
disjoint, the conditional density of X given X, is fja = faus/ fa, defined as f, is positive.

Using the independence notation due to Dawid (1979), for disjoint sets a, band cof K, X; 1L X | X, if
and only if the conditional density function fyq = fyjafeja for all values of z. We shall assume that the
density is positive on its support, and we point out that the theory has to be extensively reworked if the
assumption of positivity is not met.

Independence Graphs

Let X = (X1,X2,...,Xx) denote a vector of random variables, and consider a graph, in the sense of
Harary (1969) or Berge (1973), with k vertices representing each variable.

Definition. The conditional independence graph of X is the undirected graph G = (K, F) where K =
{1,2,..,k} and (i, 5) is not in the edge set E if and only if X; 1L X; | X #e\gi 53 - O

The graph is a conditional independence graph, or more loosely, an independence graph, if there is no
edge between two vertices whenever the pair of variables is independent given all the remaining variables.



The vector of the remaining variables is sometimes referred to as the rest. This definition is the pairwise
Markov property; and because of its Markov properties, a better name might be a Markov graph, but
unfortunately this term is already used in the theory of random graphs. We use the shorthand, for
example 1112|{3,4} for X; L X2|(X3,X4), so that the independence of X; and X; given the rest can be
written as ilLj|K\{{,j}. The resulting undirected graph gives a picture of the pattern of dependence or
association between the variables.

It is often easy to construct the independence graph if we are given the joint density function of X
by repeated application of the factorisation criterion, Dawid (1979), for conditional independence. For

example, take k = 4 and consider the density function
fx(z) = exp(u+z1 + 2122 + T22324),

of X = (Xi,X2,X3,X4) on the 4 dimensional cube, {z;z = (zy,22,23,24), 0 < z; < 1, 1 =1,2,3,4},
where the constant u ensures the density integrates to 1. The function factorises into fi () = g(z1, z2)h(22, 23, 24),

and it is easy to verify that
X]JLX4|(X2,X3) and X1_1LX3|(X2,X4).

Consequently the conditional independence graph is

0 0!0

The graph uses the fact that vertex 1 is not adjacent to either 3 or 4 for construction but highlights the
fact that the cligues of the graph are {1,2} and {2,3,4}. Note that this independence graph is identical
to the interaction graph constructed by drawing an edge between variables that occur together in the
interactions terms z;z» and z,234, of the log-linear expansion of the density function.

We remark on the importance of conditioning; there is no suitable theory for graphs constructed from

pairwise marginal independences.

Markov Properties

Inspection of the independence graph in the example above suggests that conditionally on X,, X; and
(X3, X4) are independent. It is a remarkable feature of independence graphs that is true in general: more
specifically that with respect to a given graph on a finite number of vertices, the following properties are

equivalent:

e the pairwise independence property: that non-adjacent pairs of variables are independent condi-

tional on the remaining variables;

e the local Markov property: that conditional only on the adjacent variables, any variable is inde-

pendent of all the remaining variables; and

e the global Markov property: that any two subsets of variables separated by a third is independent
conditionally only on variables in the third subset.

The strongest part of this assertion is the separation theorem, that the pairwise Markov property implies
the global Markov property.

Since these properties are equivalent, any one could be taken as the definition of the conditional
independence graph. But from the applied point of view of statistical modelling, it is most convenient to



use the pairwise independence property. There are two essential reasons for this choice: firstly, the list
of requirements to be verified in constructing the independence graph to model a given data set, is the
least stringent, while the interpretations that follow are the strongest. Secondly, the pairwise definition
of the independence relationship naturally corresponds to the pairwise graph-theoretic definition of the
edge set in a graph.

There is now a fairly large published literature on the theory of graphical models and their applications,

and some references are given here.
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