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1. Abstract

Reasons for construction of adaptive statistical procedures are discussed.
It is shown that increase of efficiency may be really important only excep-
ticnally. Another, much more relevant reason may be selection of such model

which gives a high hope to bring really consistent estimates (not estimators).
2. Introduction

It was in 1955 when ,C. Stein (1956) challenged statisticians with a ques-
tion of possibility offefficient estimation (of parameters) when corresponding
distribution is (completely) unknown. Sclutions for location parameter problem
under assumption of symmetry of underlying distribution were given by R. Beran
(1978) and C. Stone (1975). For a general (thecretical) solution see Rickel
(1982). Naturally such estimation needs to adapt estimating procedure to un-
known underlying distribution. It brings some (technical) complication and
evaluation of estimates are more time and space consuming. Hence there is a
question whether such estimation has also other than thecretical sense. The
last sentence shouldn’t say that if sclution of the problem of adaptive estim-
ation will occur interesting only from thecretical peint of view that it may
be (or even should be) considered that it is too little to try to solve it. On
the other hand there can appear another reason(s) important from practical
point of view.

Since the question was formulated by C. Stein as the question of possib-
ility to attain (asymptotically) efficiency the very first idea may be that
adaptive estimation should (considerably} increase efficiency, i.e. that it
elevates the amount of exploite. information brought'by data a lot.

In another words the first hope is that when employing adaptive procedure
we may decrease losses we suffer when making use of procedures not fully ap-
propriate for underlying (unknown) distribution. |

The fact that our procedure is not fully fitting for underlying (type of)
distribution may be due to it that we either »guessed” wrongly the kind of un-
certainty (assuming e.g. normality of errors) or deliberately turned to some
procedures with not so strict assumptions about underlying distribution and
paid fer it by a decrease of efficiency. As an example of such intently chosen
but (possibly) less efficient procedure may serve a nonparametric or robust
one. On the cther hand since commonly known procedures of these types (as for
instance median as a robust point estimator of location) really have (or may
have) rather low efficiency it is unconsciously accepted that when we use any
robust procedure we unavoidably loose a lot (of efficiency).

Although very high quality data usually contain no gross errors they still
tend to have heavier tails than normal distribution. Let us mention that such
excellent statisticians as K. Pearson (1902}, Student (1927) and Jeffreys
(1939) studied models which are the most approprimate to explain high quality
data and they found that it needs longer-tailed distribution than the normal

one.



K. Pearson collected series of data under highly uniform conditions and he
found that the best approximation of their distribution function is by Student
t with 5 - 9 degree of freedom. In recent time alsc P. J. Huber came to the
same conclusion that suitable model for scme kind of high-quality data can
lock like t3.

In the light of this knowledge it may be interesting to recall that Fisher
(1922) derived that asymptotic efficiency of mean under tv is 1 - &6/{v(v+1}]
and that of variance is 1 - 12/[»(r+1)]. Calculating corresponding values for
tg, t5 and t3 you obtain for mean 93 %, 80 ¥ and 50 X, respectively, and for
variance even B3 %, 40 ¥ and 0 X (!) (this is an asymptotic value for
ﬁéT E?=1 (xi—f)2 when n » ). So it seems at a first glance that adaptivity
may improve the situation rather much. But on the other hand for mixture model
F(x) = (1-g) ®d(x) + £d(x/3) (& being standard normal distribution) we may find
for € running from O X to 10 %¥ that the efficiency of mean decreases from 1
(i.e. 100 %) to 70 %X, while that of median increases from 63,7 X approximately
to 70 %¥. It means that the mean is uniformly better (for these contamination
levels) than the median. Naturally this uniform majorization may be dreadfully
broken by presence even one gross error. On the other hand 6 X-trimmed mean
has efficiency not lower than 96 X over the whole interval 0 - 10 % of con-
tamination. And moreover, presence of less than 6 ¥ of gross errors doesn’t
cause catastrophe. Nevertheless if we are willing to pay more (money and time)
for evaluation of estimate we may have even higher efficiency and higher safe-
ty again gross errors (let us mention as example some types of one or two
steps M-estimators). For more details and another information see Hampel et
al. (1s86).

Sc the last example showed that application of an even simple robust
estimator may yield such level of efficiency we will be satisfied with. Gene-
rally if we select from a family of robust procedures such one which is (at
least approximately) optimal for given contamination level (or expected range
of contamination levels) the loss of efficiency will be probably such that any
other activity oriented on an increase of efficiency may occur as nonefficient
and should be given up. (For the possibility of estimation of contaminaﬁion
level and following procedure selection see VisSek (19839), (1983)).

Therefore an increase of efficiency as a reason for adaptivity may be
rather exceptional. Such increase r.ay be considered as a sufficient reason for
use of an adaptive procedure only in the case of very wide range of contamina-
tion levels or high uncertainty about type of distribution (cof the bulk of
data). Also in the case when we have at our disposal rather simple and guick
adaptive procedure (and sufficiently large data) we may use it.

Nevertheless there is probably another reason for construction and appli-
cation of some adaptive procedure which may be considered very important.It
will be discussed in what follows. Let us restrict ourselves on point estim-
ation.

One very important feature of statistical estimates is that they are
»near” the »true” value. This may be expressed in mathematical model by un-
biasedness. But restriction on the unbiased estimators is usually rather dras-
tic if not impossible. Then we ask for a weaker form of the above mentioned
requirement, namely consistency.

Consistency is sometimes viewed as something what is an automatically pos-
sessed property of any estimator (although for some kind of estimators it may

be difficult to prove it). Hence we commonly appreciate much more asymptotic



normality (and maybe other characteristics of estimator as low gross-error-
sensitivity or high breakdown point).But in fact the consistency is the only
our guarantee that we are not too far from a »true model”. Hence we should
verify as far as possible very carefully those conditions under which con-
sistency holds. It seems to be basic point of data analysis, point which may
decide whether the whole analysis of data will be reasonable or not and the
results reliable or not. On the other hand usually these conditions are to be
fulfilled for unknown distribution and hence unverifiable (or verifiable only
mediately, sometimes on a basis Qf vague knowledge having source in (physical)
circumstances) . But let us consider linear regression analysis which the rest
of paper will be devoted to. (Naturally, conclusion(s) will hold for location
parameter - as a special case of regression-as well.)

For given data we may apply selected procedures of estimating regression
coefficients and then having at hand corresponding residuals, an estimator of
density may be applied which can give a hint whether or not conditions for
consistency were fulfilled. What does the last sentence want to say? Let us
consider classical least squares. After applying them on data one may verify
whether the assumption of normality of residuals (which is basic for LS) has
been (at least approximately) fulfilled. (One can test it formally by some
test of fit but due to the fact that residuals are not mutually independent it
is necessary carefully judge what the result of, let us say, x2 test means.)

Let us turn now our attention to one of (probably) basic condition of con-—-
sistency, namely symmetry of residuals distribution. Some papers assume di-
rectly that the distribution of residuals is symmetric. Let us mention as an
example Bickel (1975), Rouseeuw and Yohai (1984), Ruppert and Carrecll (1980)
or Yohai (1974) among others. May be that much more frequently the assumption
of symmetry was made in papers devoted to location preblem - see e.g. Jurecko-
va (1983), Jureckova and Sen (1981). In the case cof location parameter the as-
sumption of symmetry brought not only a technical simplification but also im-
provement of heuristic behind the problem since in the case of symmetry the
mean, the median and usually also the modus of density (if unimodal) coincide
with the center of symmetry and hence it is (probably) out of any discussion
what is to be estimated. For linear regression this fact seems to be trans-
formed into the problem whether w: want to estimate only slopes (then we may
probably do without symmetry quite well) or we want to estimate simultanecusly
slopes and intercept. Then dispense with symmetry may cause at least technical
troubles.

Moreover a lot of thecretical results simplify their form (or even are
analytically expressable only) under assumption of symmetry. See e.g. Jurecko-
vd (1977) (and Huber (1969)), Remark after Corollary 3.1 which shows that M and
R estimates have an asymptotically minimax property over the set of asymptoti-
cally unbiased estimates 1in the model of symmetric contamination. Another
example may be found in Hampel et al (1986). Since location component of in-
fluence function and asymptotic variance (of corresponding estimator) under
requirement of equivariance of estimator and symmétry of model distribution
does not depend on the scale estimator used (as preliminary estimator of scale
for instance to rescale data before using a standard M—-estimator), the estim-
ator is optimal independently of the preliminary estimation. Similarly the
change-of-efficacy function is given only under assumption of symmetry.

As a last example let us mention the estimation of regression coefficients

by means of regression quantiles (introduced by Koenker and Bassett (1978)).



Although this technic does not suppose any symmetry and even the number which
is cut off may be different for upper and lower quantiles (see Ruppert and
Ccarroll (1980)), it may be profitable to assume symmetry of residuals since
otherwise the bias of estimator of intercept is nonzero. It seems natural that
one would expect that if you find median quantile (i.e. quantile for o« = %)
that it will estimate the »true” values of coefficients consistently. But as
Jureckova (1984) proved the estimate of intercept converges in probability to
F"1¢(3) and it means that only for F symmetric the estimate of intercept is
consistent.

So it seems that there are some more or less important reasons tc assume
symmetry (of residuals). But that all what was said up to now should not be
understood so that symmetry must be assumed. Without any doubt there are sets
of real data which need to be processed by method not assuming symmetry at all
or at least the interpretation of the results of analysis using methods based
on requirement of symmetry have to be accommodated to it. (See also discussion
about a fiction - unfortunately largely spread among statisticians - that sym-
metry is basic assumption of any robust procedure; in Hampel et al. (1986)
point 10. in chapter 8.2a.)

Oon the other hand if we have good reasons for assumption of symmetry it in
fact may improve our data processing very much. In some sense it brings so
much informaticn that our results may behave as if we would have two times
more data (see Eeden et al. (1985)).

Moreover it is sometimes useful to distinguish between symmetry of model
for bulk of data (for the prevailing part of residuals) and symmetry or asym-
metry of contamination.

Let us stop for a while and summarize that we have done up to now. We have
collected some reasons which may support the idea that symmetry of model dis-
tribution may be very useful. But there may be an objection! The ”"true” model
may have an asymmetric distribution of residuals! But what is true model? When
we solve location or scale problem the answer seems to be quite simple and an
idea about model may be created estimating the density. But for the problem of
estimation of regression model any answer will not be so convincing. We are
usually in a situation when we try to explain (structure of) data by some re-
gression model and we may often select even from more mutually competing
models. The physical circumstances which point out only one (type of) ”true”
model are probably seldom. In the case of choosing from a set of compefitors
the above given reasons may argue for preference of medel with (approximately)
symmetrically distributed residuals. It is not difficult to invent a statis-
tics measuring level of symmetry.

In the next chapter one procedure which looks for (the »best”) model (with
symmetric residuals) is described. Ancther one may be then used to increase

efficiency. It will be proposed, too.
3. Notation and Preliminaries

Let us consider a linear regressiocn model

Y = XBO + e

- . 3 : - n P . -
where Y (Yl,...,Yn) is a response variable, X {xij}i=1,j=1 is a design

matrix (in the case that intercept is supposed to be included in model we

assume x., 6 = 1 for i = 1,...,n), Bo = (52"-'>Bg)’ vector of regression coef-



ficients, and e = (el,...,en)’ is a vector\of i.i.d. (according to some dis-
tribution G) random variables. (We assume that p 2 2.) G is assumed to allow
absolutely continuocus density g being symmetric. Moreover we suppose that
Fisher information is finite and denote it by I(g). Let R denote real line and
N the set of all positive integers.

Both estimators of regression coefficients will be based on the kernel

estimator of density of residuals. So we need a necessary notation for it. Let

for any i = 1,...,n Xi denotes i-th row of design matrix and for any 3 € RrP
let ei(B) = Yi - XiB be i-th residual. Let w be a symmetric and everywhere
&

positive kernel and {cn} a sequence of positive numbers converging to zero.

n=1
Denote for any ¥ € R
1 o -1
g (7, Y. = = I wleglty-rv,-x;6D)]
n i=1
the kernel estimator of density of residuals. For the kernel we shall assume
that it is three times absolutely continuocus and that there exist constants

K,,...,K. such that

1’ ) s
sup w(y) < K1 . sup lE;%X%l < K2 »
yeR y€R Y
» b H
sup 13;%2%1 < K3, sup wwa) < K4
y€R Y yeR Y
and for any n € N
max |x..] ¢ K
i=1,...,n Y >
j=1,"'>p

4. Estimator based on Hellinger distance

For a sequence {an}':_?:1 of positive numbers denote by bn(y) a symmetric
differentiable function such that for all y € R o < bn(y) < 1 and
1 ly| = a_
bn(y) = a
o} Iyl > a_tc

Definition 1. For any Y € R" put

3

Py = 3

Bn(Y) = argmax I gn(y,Y,B) g
zerP R N

I1f there is not any such point then put Bn(Y) equal to any 3 € RP such that

(—y,Y,B)bn(y)dy

3 ~ ¥ B 3 P 1
[ erty.¥.B) gL (-y,¥,Bdy > v, J ey ¥.® gL(-y.Y.® byy)dy - o

Denote for any a, b € R by 8p(a,80) = {B e rP. HB~30" > a} and by

O 0O c 0]
€ (a,b,B ) = E (a,f ) N &(b,B7)
o B o B o G
Condition A. For any & > O there is A € (0,1) and KA € R such that
i)
limsup sup o I E*gn(y,Y,B) E*gn(—y,Y,B) bn(y)dy < A
n-»o g _(5,K,,8)
p A .
and
iid
limsup  sup j g*(y,v,ﬁ> g*(-y,v,ﬁ) b_(y)dy < A in probability.
o n n n
n-co 8p(KA’B )

Remark. Condition ii) is meant so that the left hand side converges in prob-

ability to a random variable less then A.



Theorem 1. Let Condition A be fulfilled and
4ap _-2p

lim ¢_ = 0, lim nc_ = = and lim nc_"a = @
n n n n
Nn-o -0 n-»o
Then Bn(Y) is (weakly) consistent estimator of Bo
Theorem 2. Let there is M € R such that
sup |@’(y)| < M
Y€R
and
limsup g(an) / €, = 0
nN-00
Further let
j t wolt)dt < oo
and Condition A be fulfilled. Then
- P ~ n - n -
Y &ﬂﬂﬁ] I x;, = nt o o ﬁ-«;f]g‘{&—xeﬂ + o (1).
2=t i=1 * i=1 * o P

5. Maximum~likelihood-like estimator

In what follows let gn dencte a preliminary estimator of regression cocerf-

ficients and denote by ;i residuals ei(ﬁn). For a sequence {an}oc

n=1 of positive

number, a, A o define

1 l¥| s a_
bn(y) =
0 fv| > a_
Condition B. Let
lim néc: = o and lim n46—1c: = ¢o
N=0 N-»o
Moreover let
nZGE"gn_BOHZ = o(1)
and preliminary estimator is assumed to be such that fer any j = 1,...,n;
i=1,...,n, t €R, s €R
Pg[ei - E{e | e =t} < s] = Pg[ei - E{e ] e. -t) > -s]

Condition €. Let for any a € R

lim sup n ¥ 2 I w-l[c_l(z+b—t)] g(t) g(z) dtdz = ©O
. n n
00 lbIQa

Further let there exist », D (v > O, D > O) such that for any 2y, Z € R,
|zl—22| < ¥ we have w(zl)/w(zz) < D. Let

1im L xx = @

Nn-=co
where Q is a regular matrix.

Definition 2. For any sequence (dn]:=1 denote by

[{dn)n 1] = {b; h is a density and for any n € N

{max{;up lg, (v, Y,69-h(y |, sup &, (¥, v,68% -E.g_(v.Y.8 1} 34 ) < @ n}
ye

~
~

Definition 3. Under Bn we shall understand a point (or points) for Rp for

which
n -~
ﬂ gn[ej(ﬁ),Y,En] bn(ej) = max !

j=1



~
A

Again if such point does not exist let Bn be any point é for which

=l

n=33

~ n
) g,[e;®.v.5") b Ep > sup | g, [e;® .7 B &) -

j BeR® j=1

Condition D. Let
dn
lim — = =

n-sc N
Further let us assume that there is a constant K6 such that
[|ﬁ“u>x]_—¢o

N-»c0

Let g € G[{dn}n 1) and the above given sequence {(a )n 1

of such type) that starting from some PN € N we have for any n 2 Ng

_ . ¥
[2an, 2an] c {y €eR : gly) > dn}

be chosen so (and g be

Finally let
1lim n c6 a‘2 = o
n n
-0
condition E. Let the density g and the kernel w be such that for any t > ©

] [g’(t-y) - g’(t)] wiy) dy > 0

Remark. Although the above given Conditions B - E may seem at the first glance
rather restrictive they can be fulfilled for rather broad class of distrib-

utions. The details were described in Visek (1990b) .

Theorem 3. Let Conditions B - E holds. Then ﬁP(Y) is (weakly) consistent

estimator of Bo and the following representation takes place for any k =
=1,...,p
Iw [c (e . —z)]g(z)dz

x 3 _ n
n¥ [ﬁ“—ﬁo]x'xk =n¥ ey x. _ + o (1)
I w[cn (ej—z)]g(z)dz

Corollary.

.f[n—i[fé’n—ﬁo])(’)(] — N[(D, Q.I_l(g)]

N0

6. Discussion

It is clear from THEOREM 2 that the estimator based on Hellinger distance
selects the model having - as far as possible - approximately symmetric dis-
tribution of residuals for the bulk of data. Since one of important assumption
the proof of consistency was based on is symmetry of errors this method is
consistent with its assumptions or at least it endeavours to be. On the other
hand the second method - applying maximum likelihood principle on preliminary
estimated distribution of residuals - has advantage that resulting estimates
are asymptotically efficient. Both methods requires to find the estimates as
point (or points) at which some functionals reach their maxima. when im-
plementing these procedures one easy finds that it is possible te find such

point only approximately by means of some iterative process starting from some



preliminary »guessed” values of coefficients. Experiences have shown that it
may be useful to proceed as follows. At first we should find some (highly)
robust estimate of regression coefficients e.g. LMS (Least Median of Squares)
or LTS (Least Trimmed of Squares) estimate and starting frem it to find (e.g.
by means of steepest direction method) approximate solution of the first
method. Then we may apply the second method which usually changes value of es-
timates only slightly (it is easy to see that for B = Eﬂ one obtains zero as a
value of functional used for maximum-likelihood-like estimation and hence a

solution are usually nearby).
Numerical illustratibn

As an numerical illustration we shall present two examples. The first one
will consider an artificial data, the second then well known data - Stackloss
data.

Let us start with the first example. To guarantee symmetry of errors”
the numbers were generated as follows. We have assumed regression model y = x
+ e with e distributed according to N(0,1.3). We have successively generated

numbers uniformly distributed from [-4,4] (as values of xis) and normally dis-

tributed numbers (N{(0,1.3)) as values of eis for i = 1,...,27. Then we haveput
y2i X, - |ei|4 Further we have generated numbers {i (uniformly on [0,23) for
i =1,...,27 and put Yoij-1 = %j ~ 31gn(xi) . Ei + |ei|. Finally we have con-

structed two leverage points in a similar way. For them we have changed sign

of response variable. We have obtained

ARTIFICIAL DATA (y=x+e; x..U(~4,4); e..N(0,1.3); 2 leverage points)

I I DI T I I I DI I T I I I I DI I IE I HE I W6 I I I I IE I FE I I I I I I I I I I I I I I 6 I I I I M

case X b4 case X Y
i -3.758713 -5.450430 29 3.018787 5. 729336
2 -3.419444 -1.727727 30 2.481405 1.5806175
3 -1.443068 -1.807758 31 1.925544 2.900774
4 -1. 069856 -0.705167 32 0.207729 -0.176134
5 -1.215064 -1.653717 33 -0.017527 0.366336
6 0.147676 0. 586328 34 1.335698 0.173457
7 -2.664302 -4.326543 35 1.153117 2.3156358
8 -2.481722 -0.819481 36 3.666636 2.355866
o ~3.780872 -4.921943 37 1.724177 3.034948
10 ~2. 152639 -1.011568 38 9.912632 -11. 469360
11 ~-0. 665691 -1.383678 39 1. 099867 -0.2042496
iz -0. 089969 0.628017 40 -0.592642 0.711471
13 -1.564029 -2.658770 . 41 3.949518 1.425105
i4 -1.334501 -0.239761 az 3.484233 6. 008646
15 -1.840087 -2.936874 43 0.912645 0.830367
16 -1.295033 ~0. 198246 44 0. 562032 0.644310
17 -2.173251 -2.683591 45 1.938431 0.532863
18 -1.549990 -1. 039650 46 0.117101 1.522670
19 -1.3587830 -1.690449 a7 2.159913 1.063126
20 0. 159062 0.491681 48 1.614859 2.711646
21 -3.551338 -5.326357 49 3.373824 0. 688264
22 ~-3.221335 -1.446316 . 50 1.842544 4.528104
23 11.547648 ~9.,9903820 51 0.303299 0. 055823
24 -2.058207 —-2.255504 52 —1.344843 -1. 097367
25 -0.144130 0.053167 53 0.717807 0. 389267
26 2.547648 0.990620 54 0.167538 0. 496077
27 0.912632 2.469360 55 0. 080927 -0.2550941
28 3.170015 0.4594966 56 0. 055200 0.392068



The LS method,

estimator and adaptive estimator of Hellinger type were used.

been as follows

type of estimator

intercept

slope

The following pictures should give an

sities of residuals.
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Since it seems that data could be viewed as a mixture of two groups cne pos-

sible group was selected

(according to GM-estimator)

and again

the above

ment ioned procedures were applied. The data and results (again with cor-
responding pictures) hawe been in this case as follows.
ARTIFICIAL DATA (y=x+e; x..U(-4,4); e..N(0,1.3))
***********************************************
case x y case X y
1 ~-3.758713 -5.450430 20 3.018787 5.729336
2 -1.443068 -1.807758 21 1.925844 2.900774
3 -1. 069856 -0.705167 22 0.207729 -0.176134
4 -1.215064 -1.683717 23 -0.017527 0.366336
5 0.147676 0.586328 24 1.153117 2.315358
6 -2.664302 -4. 326543 25 1.724177 3.034948
7 -3.780872 -4.921943 26 -0.592642 0.711471
8 -0.665691 -1.383678 27 3.484233 6. 008646
9 -0. 089969 0.628017 28 0.912645 0.830367
10 -1.564029 -2. 658770 29 0.562032 0.644310
11 -1.840087 -2.936874 30 0.117101 1.522670
12 -2.173251 -2.683591 31 1.614859 2.711646
i3 -1.549990 -1.039650 32 1.8428544 4.528104
14 -1.357830 -1.690449 33 0.303299 0. 055823
15 0.159062 0.491681 34 -1.344843 -1.097367
16 -3.551338 -5.326357 35 0.717807 0.389267
17 -2.058207 -2.255504 36 0.167538 0.496077
i8 -0.144130 0.053167 37 0. 080927 -0.255941
19 0.912632 2.469360 38 0. 055200 0.392068
. |
— ARTIFICIAL DATA (reduced) — LS model
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ARTIFICIAL DATA (reduced) - LS residuals
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38 and no of them out of range of this graf.
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ARTIFICIAL DATA (reduced) — IMS residuals
Graf of density and c.d.function

Total number of points= 38 and no of them out of range of this graf.
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ARTIFICIAL DATA (reduced) - Adaptive residuals

" Graf of density and c.d.function
1 |
< Total number of points= 38 and no of them out of range of this graf.
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The second.example will consider Stackloss data (see Brownlee (1965)).

Let us explain abbreviation in the next table. LS denotes again Least Square
estimate, %(.5)—regression gquantiles for o« = .5, %PE(.lo) - Trimmed Least
Squares where trimming was symmetric and trimmed off the 10 ¥ of largest and
smallest residua in the model with preliminary estimator which was in this
case average of the w«ath and (1-a)th regression quantiles (i.e.

~

Bpreliminarf (Blo) + ?3(1-04))/2 for o« = .1), E?KB(.15) - Least ‘Equare
estimate after trimming off points according to regression quantiles ((.15)
and ?3(.85), Huber and Andrews -. corresponding M-estimates, LMS - Least Median
of Squares (in fact model in which [(n+p-1)/2}th order statistic of residua
was minimized), LTS (Rousseeuw) - Least Trimmed Squares (in fact this estimate
is %PE(O‘) where as the preliminary estimator served LMS) and Adaptive -

adaptive estimator of Hellinger type.




STACKLOSS DATA

Estimates of coefficients

Method
Intercept Air Flow Temperature Acid
LS 39.92 -, 72 -1.30 .15
B(.5) 39.69 ~.83 -, 57 .06
3PE(.10) 40.37 -.72 -.96 .07
Beg(- 15 42.83 -.93 -.63 .10
Huber 41.00 -.83 -.91 .13
Andrews 37.20 -.82 -.52 .07
LMS 34.50 -.71 -.36 .00
LTS (Rouseeuw) 35.48 -.68 -.56 .01
Adaptive 34.50 -.72 -.36 . 00
* |
{36 STACKLOSS DATA - LS residuals
1.32] Graf of density and c.d.function
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