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1. Intreduction

The classical estimation procedures - e¢.g. the sesmple mean
as an estimator of Location and the least squares estimator of
regression - are highly sensitive to the outlying observations
and to the leng-tailed distributions. 1t was {llustrated in a va-
riety of Monte Carlo studies (e.9., Andrews at al.(1972)), in the
results on the characterization of the normal lLaw through the ad-
sissibility of the sasple mean and the least squares estimator
with respect to the quadratic loss (kagan,Linnik and Rao (1965,
1972)); in the studies of tail-behavior of location estimators
(Jurelkovd (1979,1981)), among others.

Asong the robust alternatives of the classical estimators,
which are lLess sensitive to the deviations from a specific distri-
bution shape, three broad classes play the most important role :
N-estimstors, L-estimators and R-estimators.

The aim of the present chapter is to describe these three
clesses of estimators, their finite-sample properties as well as
ssyaptotic properties, first on the location and then on the
regression case. Ve shall alsoc touch the computionally easier
one-step versions of these estimators and the sutual relations
of the estimstors. This account is far froa being exhaustive;
verious other results concerning the robust estimators may be

found in the bibLiography.



2. Estimation of Llocation

Let x1, lz,... be a sequence of independent observations
from the population with the distribution function (def.) F(x-8).
The problem is that of estimating @ after observing x‘,...,xn.
We shall assume, unless otherwise stated, that F is absolutely
continuous with the symsetric density f. If we do not impose
any other special conditions on F, we cannot take the sasple
sean as a convenient estimator of . We must then look for al-
ternative procedures which are robust , 1.e. relatively insensi-
tive to the special shape of distribution,

Assume that F 1s an unknown member of a given founily @'
of distribution functions. The choice of the estimation procedu-~
re then depends on ‘X which may be as Large as the fasmily of
all [symmetric] absolutely continuous defo."s, it may be a
neighborhood of a fixed distribution or a finite set of distri-
butién shapes. Estimating @ over a large ?ﬁ corresponds to
the global point of view; the estimator which is not very poor
whatever s F eqf is then paid for by the lLower efficiency.
Estimating ©® over a small neighborhood {¥ of a given distri-
bution corresponds to the local point of view; for convenient

neighborhoods there often exists an estimator which is minimax

over ? -

2.1. N-estimators (estimators of maximum Likelihood type)

The class of M-estimators was suggested by Huber {1964),
who then studied their properties in a series of papers; the
results may be also found in Huber's recent monograph (1981) .

Let X, X5,c.s be a sequence of independent observations

from the population with the d.f. F(x=-8) such that F is ab-



selutely continuous and F(x)+F(-x)=1, x R'. Then n-estimator

un-n.(xt,...,xn) 1s defined fmplicitly as a solution of the equa-

tien

F:_; l‘)(li-t) = 0 (2.1)

with respect to t , where nv is an appropriate function attain-
ing positive as well as negative values, If there are more solu-

tions ot (2.1) then N, ®may be defined as that the nearest to

a preliminary consistent estimator LI of O (and Larger one,

i1t there are tuwo solutions equally distant from Tn 3 we may put
In = 0, 1f there is no solution).
The function qj is often selected nondecreasing and skew-

syametric. In such case may be nn defined as

", = -::(u; + n;) (2.2)

where

n; = sup {t: ?:!\P(xi-t) >0}
MERTY it: gn{(xi-t)m}

or, alternatively, "n may be defined through the randomization:

- +
" is equal etther to "n or MW,

(2.3)

both with probability 1/2 .
1t F hapens to be known and smooth, we can put ﬂp(x) =

= £ (x)/f(x) , xR

and " then coincides with the maximum
likelthood estimator (m.l.e.) of @. Particularly, for Ay(l) ]
s x is N = ,n , which turns out to be the m.l.e. for the nor-
mal distribution, The class of M-estimators covers also the sam-

ple median (which corresponds to mv(x) = gign x ).

Various ﬂ)-functiona {ead to various M-estimators; the



question 13 then that ot the proper choice of ql . Me intuiti-
vely feel that, if 'n is to be resistant to the outliers and

to long-tailed distributions, we should take a bounded ny-func-
tion. The most utilized function mv is that suggested by Huber

(1964)

X it I1xl € ¢
&?(x) = (2.4)

c.sign x if (x| >e¢

with given ¢ >0, Various aiternative choices of 'W are descri-
bed, ¢.9., in Andrews et al.(1972). 1If we wish to get a better
performance of Hn at very long-tailed distributions, we should

select a function satisfying

qV(x) = 0 it ixt > ¢ (2.5)

for some ¢ >0, The pertaining M-estimators called redescending,

are studied by Collins (1977), Portnoy (1977), Collins and Port-

noy (1981); see also Huber (1981).
2.1.1. Finite~sample properties of M-estimators

Assume that x1, xz,...,xn are 4.i.d. randoms variables

distributed according to d.f. F(x=-8) such that F(x)+F(=-x) =

= 1, xﬁ.ﬂ1. Let "n be an M-estimator defined in (2.2) and

(2.3) with a nondecreasing nonconstant function AV such that

'\j()("!)‘-'\tl(x), xcR'. Then
(1) Hn(x1+c,...,xn+c) = Hn(x1,...,xn) + c for xeR , ceR
(m is translation-equivariant);

(1) P: i?:" Plxg=t) '~'l0§ €po(m € t) = Peli_“‘ YKy -t) ¢ ol

for ¢, oen' 3



(111) 3 - § 6 rg(n C0) £ p(n o) € 33
1 3 »
for @R, with & = P :z:;a{y(xi) 0).

By (ii41), ", is median unbiased provided PO(EQ%JWKxi)-O )

= 0, 8y (1), ", is translation-equivartant; however, K 1is ge-

n
nerally not scale-eguivariant, i.e., it generally does not satisfy
u”(cxi,...,cxn) = ¢ ln(x1,...,xn), ¢>0. In practice it means

that MN-estimators of location should be supplemented by an esti-

nator of scals.

The following theorem, due to Huber (1968), shows that nn

generated by ﬂl of (2.4) has an interesting minimax property

over the Kolmogorov neighborhood of the normal distribution,

THEORER 2.1. Let x1,...,xn be 4.1.d. random varisbles distri=-

buted according to the d.f. F(x=-8) such that F(x)+F(-x)=1, xe-,R1

snd F {s an unknown element of the family

‘x = {f : .UPIGR1 |F(!)-¢(l)| ‘i} (2.6)

uith éb being the d.f. of the standard normal distribution, £>0.

Let .n be defined as
+ - 1
P(nnlun) » P(Hn'ln) S (2.7)

where H;, H; are defined in (2.3) and &V is given in (2.4)

with c¢>0 satisfying
o200 @(.-c)- @(-.-c) sg (14723 | a>0. (2.8)
Then R minimizes
Py SUPg o p 1 max [Po(T -0{-0),Pe(T -8 >0) ] (2.9)

over the set of estimators T of 8 .



Proof. The theorem is proved in Huber (1968) 3 see also Huber
(1969) . Further and more general fintte-sample minimax results
may be found in Huber and Strassen( 1973), Rieder (1977,1980);

see also Huber (198%).

2.1.2. Asysptotic efficiency of K-estimators

it Tn-Tn(x1,...,xn), n*1,2,... , is a sequence of estimators
which s asymptotically normally distributed as n=p»00, then the
efficiency of Tn is usually measured through the variance of
its asymptotic distribution. The M~estimators are asymptotical~
ly normally distributed under sild conditions on NV and F ;
this was first proved in Huber (1964) and (1965) .

1f \y is skew-symmetric and has bounded variation in every
interval, f.e., it may be written as ‘? = Q¥1 - sz where m¥1
and sz are nondecreasing , and if F has an absolutely con-

tinuous symmetric density f(x) such that

1(F) = S(f'(x)/f(x))z dF(x) {0 (2.10)

(finite Fisher's information) and

Swz(x) dF(x) ™ (2.11)

then the M-estimator Hn is consistent and asymptotically nor-

mally distributed in the sense that

(n'(n_-8) — N(O, QZ(W,F)) as  n—) 00 2.12)
where
n -
G'Z(N?,F) = sz(x)dl’(x). (o tx) dap(x) ) ¢ . (2.13)

The more we assume about WJ , the Less we need to impose



on F to achieve the asymptotic norsality of N ; for instan-
ceo, it AV is a step~-function, then the derivative of F should
exist enly in a neighborhood of the jump-points of N .

Ve see that, feor qp bounded, Gz(av,r) is finite for a Lar-
ge class of distributions, The charscteristic '"Prexez(‘\k")
say be considered as & messure of robustness of the M-estimator
generated by /Y over the family ‘y . If 0; is & neighborhood
of a given distribution, for instance of the normal one, there
say existan optimal l*) vwhich ainimizes SUPg. Ny G'Z(IV,F). Let
us fliustrate one of such minimex results (established by Huber
(1964)) cerresponding to the case that y forms a special neigh-
borheod of the norsal distribution.

THEOREM 2.2. (Muber (1964)). Let Qi be the family of <©-conta-

sinated norsal distributions, i.e.,

7; = {F : Fs (1-5_)@'»&", HGWL} (2.14)

vhere m is the set of all symmetric distribution functions,
¢ 4s o fixed number, 0€< < 1, and (5 is the standard normal
d.f. Denote nPo(x) the function defined in (2.4) with ¢ se-

tistying

2 [(f‘(C)/c) -1 ¢ @(c) ] = £/(1-%) , fr(x)= 2% . (2.15)

Then

nup"gtﬂ’z( IYO,F) = 'lnf(‘, supreyt Bz(r\l),F) (R.16)

and the supremum on the Left-hand side of (2.16) f{s attained
for the d.f. Fo with the density

(1-8) #(x) it 1xl € ¢
fo(x) . (2.17)

(1'9(2”-”20:9{5; - clxl} it Ix] Dec.



Resark 1. The distribution (2.17) 48 the least informative one
in ‘;&. , 1.0. I(Fo) = {nt {I(F) H Fc—.?bk; the M-estimator ge-

nerated by qvo is the maximum Llikelihood estimator for Fo'

Remark 2. The characteristic supg ¥ 82(1v,F) is slso studied

in Collins (1977), Portnoy (1977) and in Collins and Portnoy( 1981).

2.1.3. Some further developaents

Hampel (1964) introduced the influence curve of an estima—
tor Tn as a measure of the local sensftivity of Tn to the
infinitesimal deviations from the underlying distribution. It is
the measure of the sensitivity of the functional countrepart T(F)

of Tn and i3 defined as

1e(x;F,7) = Un o+ [ 1C0-mF 4 n E)-1(H) ], (2.18)

where Sx is the degenerate d.f. of the constant x , x en1.
The influence curve of the M-estimator generated by \) is

1¢(x;T,F) = «V(x-T(F)) (?&v'(x-T(F))dF(x) )-1 . (2.19)

Field and Hampel (1978) (cf. Field (1978)) developed an
Edgeworth-type expansion for (-g;/gn) with g being the den-
sity of the M-estimator Hn. Their method provides very precise
approximations aven for ssall samples.

Boos and Serfling (1980) derived the Law of iterated loga-

rithm for "n (cf. Serfling (1980)) . Bahadur's type represen-
tations ot M_ were established by Carroll (1978) and Jurelkovd
(1980). Jurelkova and Sen (1982) proved the moment convergence
of "n and derived the asymptotically risk-efficient sequentiat

versions of Hn with respect to the loss L(a,c)m a(Tn--O)2 + ¢n;

a,c>0.



2.2, R-estimators (estimators derived from the signed-rank tests)

The signed-rank test of the hypothesis H : @ = .o is typi-

cally based on the statistic

R (0)

s (X -8) = 2:"‘ sign (X;-6.) t?*(%n-"— ) (2.20)
uhere R* () s the rank of IX,~9 | emong X, 1, ... 1X -8
and ‘f’( t) = l{)((to‘l)l?), 0t 1 , where \P(t) is nondecreas-
ing and square-integrable function, l?(1-t)- -te(t), 0<t<1. The
statistic sn(g-t) ijs then nonincreasing in t and attains po-
sitive as wvell as negative values with probability 1 and

Eo sn(5'°o)' 0. The R-estimator of 8 is then defined as » solu-

°
tion of the equation sn(s-t)-n ; more precisely, 1t is defined as

R = % (2 + &%) (2.21)
where
lt; = gup i't : sn(g-t);»o}
2.22
R = int {t . sn(’.‘.'”<°k . (2.22)

The R-estimators of location, which are the inversions of the
signed-rank tests, vere suggested by Hodges and Lehmann (1963).
Only some single R-estimators could be given a simple explicit
fors : besides the sample median (which is the inversion of the
sign test), the most well-known is the R-estimator corresponding

to the Wilcoxon one-sample test (usually cealled Hodgel-Lehlnnn's

estimator); it can be written as

X, +X
R, = wed {b—lz-l : 165, j€n k. (2.23)

The trismed version of the Hodges-Lahmann's estimator , namely,

X, +X
R = 8ed l%—i : [nx]+ €i,= n-[no&]}, (2.24)



0 { ®<1/2, appears in some contexts (ctf.miura (1981)); this

estimator corresponds to the trismed Wilcoxon test.

2.2.7. Finite-sample properties of R-estimators

Let x1,...,xn be 4.i.d. random variables distributed ac-
cording to an absolutely continuous d.f. F( x-@) such that

F(x) ¢F(=x)=1, x eR‘. Let R be an R-estimator defined in (2.27)

n
and (2.22), generated by a nondecreasing score function ? such

that ?(1-t)= -tf(t), 0{t<{1. Then

(1) Rn(x1+c,...,xn+c) = Rn(x1,...,xn)+c for xel!n, CER1

(transtation-equivariance)

(i) Rn(Cl1,...,CXn) = C Rn(‘1f--"‘n) ’ 5&“"; c>0

(scale=equivariance)

(i14) Pg(s (X-1) C0) £ Pg(R £t) = Pg(s (X-0)% 0), t,0eRr

(iv) .}-gfpg(anut) épo(nni 9) £;+% , GER,

with €= Po(S (X-8)=0) = Po(s (X)=0) .

Remark. The properties (i), (iii) and (iv) are analogous to
these of M-estimators . The value & in (iv) is independent of
F. The property (i1) is the only one which we miss in the case
of M-estimators. On the other hand, R-estimators do not have the
finite-sample minimax property of Huber's M-estimator  see Theo-

res 2.1).

2.2.2. Asymptotic efficiency of R-estimators

Hodges and Lehmesnn ( 1963) proved that the asymptotic effi-

ciency of the R-estimator coincides with the Pitman efficiency



of the cerrepponding signed-rank test. Thus, to establish the
efficiency of an Reestimator, we need to know the asymptotic
distribution of the signed-rank statistics under contiguous Llo-
cation alternatives; and this wes studied in details in the mono-
graph Hbjek-31ddk (1967).

Assuse that the score-generating function t? is skew-sym-~
metric, square-integrable and is of bounded variation on every
subinterval of (0,1), f.e., ?-1?1- LPZ where t{)1 and t{)z
are nondecreasing; then, provided F has an absolutely conti-
Auous sysmetric density with finite Fisher's information (see

(2.10)), then

(" (»,~9) 2, wo, o -F)) (2.25)
with 1
G'z(tf,F) = SLPz(t)dt.(S\P(F(x))f'(x)dx )“'2 . (2.26)

‘le see that 0 Gz(lf,F) {O¢ under general conditions., If we put

PO = Pt = =TI AETI) 0K (2.2D)

0
then Gz(f),r) s 1/I(F) ; it means that the class of R-estima-

tors also contains an asymptotically efficient element. Similar-

Ly as in the case of M-estimators, we are interested in the be-~
havior of sup 4 G'Z(l{),F) over some family ‘X of distributions,
¢.9. over the fanily % of contaminated normal distributions
(2.14), Then (cf.Jaeckel (1971)), if we put ?o(t) =|€fo(t),

0 (t{1, with f, being the least informative distributien

(2.17), 1.e.,



(-c i1 t<K
t | @'1 t- & /(1- $461q-
&)= ((t- %) /(1-€)) it oftér- (2.28)

¢ if t >1-o

where Ol = (EIZ)K1-&)(§(-c) , ue get an R-estimator satisfying
uppey 62(‘00,;) - 1nf? sPee, 5%( 0.0

1t could be shown similarly that the trimmed Hodges-Lehmann’s
estimator (2.24) provides the saddle-point for the family of con-

taminated logistic distributions (cf.Riura (1981)).
2.2.3. Some further developments

Antille (1974) established the Bahadur’'s type representation
of Hodges-Lehmann's estimator and Huikové and Jurelkové (1931) for
a more general R-estimator. van Eeden (1970) and Beran(1974) de-
veloped asymptotically uniformly efficient (adaptive) R-estima-
tors of location. Sen {1980) proved the moment convergence and
developed the asymptotically risk-efficient sequential versions

of R-estimators.

2.3, L-~estimators ( Linear combinations of order statistics)

Let x1, xz,... be a sequence of independent random variab-

les, identically distributed according to d.f. F(x=-0), F(x)+F(=-x)

= 1, x*&R1 3 let X ., € ... ¢ Xnsn be the order statistice cor-
responding to x1,...,xn. The L-estimator of 8 1s defined as
L, = .é; €y Xn:d (2.29)
where the coefficients €h12°***%nn satisfy
n

€ni"Cn,n=1+1 20, 121,000,N } E§;°ni =1, (2.30)



This closs of estinaters covers the sample mean as well as the
solple wmedian. The L-estimators are computionally more sppealing
thom N- and R-estimators. If we wish to get & robust L-estimator,
insengitive to the extreme observations, we must put €0 for
1‘&. and 15u-ku+1 uith a proper kn. Typical examples of such

estinsteors are the <-trimmed mean,

n={p«)
L, = (1/(n-2[ne)) i'E£;JO1 S (2.31)

"and the O(-Winsorized mean,
n

| <fosd]
Lll ] %t[nq] xn:[nq]’ 1.g+1 Xn:ii' [ne xﬂ%ﬂ'[ﬂd]'ﬂ i(ZoJZ)

0 {®X<1/2 oend [x] ¥s the largest integer &k satisfying kéx,

Rost of the L-estimators may be expressed in the following

way
1 &, k
Y* % E"(—nﬂ') Xnig * jg\ & xl‘l:[ﬂpj] (2.33)

where J(u), 0 u<1, is a proper weight function satisfying
J(uw) = J(1-u) ¥ 0, 0{u<1 and PgeseosrPyl 84s000,8, are given
constants satisfying 0<p1 ana (pk {1, pj""k-jﬂ" 'j"k-jﬂ

20, §=1,00a,k. La s then of the form (2.29) with ¢ equal

ni
te n"J(ﬁét) plus an additional contribution aj if 1'["°j]
for some J§ (16§€k). It is usually assumed that J is a fairly
smooth function; meny L-estimators reduce to just one term of

(2.33).

2.3.1. Finite-semple properties of L-estimators

Let L, be the L-estimator defined in (2.29) and satis-

fying (2.30); then, provided XqeX3see0 are distributed accor-

1

ding to the d.f. F(x=8), F(x)+F(~x)=1, xeR', it holds



(1) Ln(x1+c,...,xn+c) = Ln(‘1""'xn) +c; 54&!", cenl,
(§4) Ln(cxi,...,cxn) = ¢ Ln(x’,...,xn) 3 X eln, ¢c>0 .
(4144) I1f F 1is absolutely continuous, then

PolL, <®) = Pg(L %8) = 1/2, o erl .

2.3.2. Asymptotic efficiency of L-estimators

The asymptotic normality of L-estimators was studied by

many authors under various conditions on F and on ¢ 's.

ni
We may mention Bickel (1965 , 1967), Boos (1979), Boos and
Serfling (1980), Chernoff, Gastwirth and Johns (1967), Huber
(1969), Shorack (1969,1972), Stigler (1969,1974), among others.
A good review of the asymptotic results on L-estimators may be
found in Serfling (1980).

Let us first consider the L-estimators of the fora (2.33)
with vanishing second component. Then, again, the more we as-
sume on J, the less we must assume on F., For robust L-esti-
mators, it is wore convenient to put more restrictions on J
rakther than on F. From the various theorems on asymptotic

normality of Ln’ let us describe one proved in $tigler (1974;

see also Stigler (1979)).

THEOREN 2.3. Let X, X,,... be the sequence of independent ob-
servations from the d.f. F(x~9) such that F(x)+F(=-x)=1, x¢=R1,
Let J(u) be a function such that J(u)=J(1=-u), 0Cu<t and

g J(u)du=1. Then, under the assumptions

(4) J(u)=0 for O0<Cu< and 1=-x < u<1, {s bounded and sa-

tisfiesa Lipschitz condition of order >1/2 (except possibly



a_tiaite number of potnts of §~! seasure 0);

(14) j‘lr(xm-rml”‘ dx Coo and

0.0 = J a2 () ICatnCxa)) #(x) POy ax 0y

(2.34)
is pesitive,
Then the estismator
L a f‘; e oy (2.35)
satisfies
ﬂ'(l-,,'.) -g) N(o, B'Z(J;F)).- 8 o |, (2.36)

If th fs of the fora (2.33) and the second component
dees not vanish, then, under the assumptions of Theorea 2.3,
fﬁq(tn-i) i1s asymptotically normally distributed N(O,t?z(F) )
with

o%r) = var - §(1x,89 - 602 a(r(r))ay
(2.37)

+ g[.j/f( F-1(pj))](pj-1[x1'r-1(pj)])J »’

provided F"(p) has posftive derivative at Pir J%1, 000,k
(cf.Boos (1979)).

Under additional assumptions on F, the asymptotic normali-
ty with the vartance og(J,F) of (2.34) wmay be established
even for J which puts positive weights on the extremes (Stig-
Ler (1974), Shorack (1972)).

If F has an sbsolutely continuous density f and fini-

te Fisher’s information I(F), then the L-estimator (2.35) with
W) = a0 = e ) racr), o<t <y (2.38)

where ayr(x) = -f'(x)!f(:), :leli, satistiss GZ(J',F)t 171(F).



It means that-the class of L-estimators also contains an ssymp-
toticslly efficient element,

1f we put Jo(t) = J'o(t)' 0<t<1, with 'o being the
d.f. of the Least informative distribution (2.17), i.e.,

1/( 1-20) it € t € 9-
J () = (2.39)
LO othervwise
with o= F (=c) = % + (1-&)@(-::), we get an L-estimator sa-
o

tisfying

sup 62(J F) = inf  sup ez(J F) (2.40)

Fe¥, 0’ 3 SUPRSY, . y

where Qé is the family of g~contaminated normal distributions
(2.14). The L-stimator generated by Jo(t) is the Xe-trismed
mean. We may conclude that the o-trimmed mean is the most re-
commendable estimator of the center of symmetry of the contami-
nated normal distribution. 1t is computionally simple and it is
not only translation- but also scale—-squivariant. Bickel and
Lehmann (1975) proved another attractive property of the x-trim-
med mean : its asymptotic efficiency relatively to the sample
sean X _ cannot get below (1-2«)2 not only for symmetric F

n
but also for every strictly increasing and continuous F.

2.3.3. Some further developments

Berry-Esseen bounds for L-estimators were studied, among
others, by Bickel (1967), Bjerve (1977), Boos and Serfling (1979),
Helmers (1977,1980,1981); the Law of iterated logarithm and al-
most sure asymptotic results were established by Weltner (1977a,
b) and van Zwet (1980). Invariance principles for Lestimators

were proved by Sen (1977,1978; see also Sen (1981)). Moment con-



vergence of L-estimators and their asymptotically risk-effi-
cient versions were studied by Jurelkovd and Sen (1982). The
tail behavior of L-estimators in the finite sample case vas

studied by Jurelkové (1979,1981).

3., Estimation of regression

Let X = ('n1""'xnn)‘ be the vector of independent ob-

servations satisfying

Xn " Shn 8¢ K (3.1)

vhere § = (01,...,09)' is the vector of unknown regression
parameters, § = (51,...,En)' {s the vector of errors and gn =
= [cg?)]zzl:::::: is a known design matrix of the rank »p.
The probles is that of estimating 0. We shall assume troughout
that 51' 1= ,...,n, are independent and identically distribu-
ted according to a common d.f. F which is an unknown member

of a family ¥ of d.f.’s. The coordinates of X, andof C
depend on n ; we shall not indicate explicitly this dependence

unless it coudd cause a confusion. Let us denote

S‘(t) = xi - é1c1jtj' 1‘1,...," (3-2)

the residuals corresponding to the vector t = (t1,...,tp)'.
What vas said about the sensitivity of the sample mean
to the outlying observations and to the long~-tailed distributions,
outliers '
holds also for the Lesast=squares estimator (l.s.e.); ;ﬁa‘Ihi\
are nore difficutt to track in the Linear model, The M-, R-
and L-estimators extend, in a more or Less straightforvard

way, to the linear model.



3.1. NR=gstimators

The MN=estimator gn of g is defined as a solution of

the system of equations
;z;c1jny(xi- E:;ciktk) = 0, =1 ,000e,P (3.3)

with respect to t1,...,tp. 1f there are more solutions of (3.3),
then "n may be defined as that the nearest to some proper pre-
Liminary consistent estimator of 8. If F has an absolutoly
continuous density f and we put nv(x) = -t°(x)/7¢(x), xe§l1

’

we get the m.l.e. of g 3 ﬂn coincides with the L.s.e, if
Y(x) = x, x cR1,

Simitarly as in the location case, !n is translation-equi-
variant but generally not scale-equivariant, so that, unless
the scale of F is supposed to be known, 5n should be supple-
mented by an appropriate estimator of scale,

The asymptotic behavior of ﬂn a3 Nn—poo was studied by Rel-
Les (1968), Huber (1972,1973), Yohai and Maronna(1979), asong
others. Under the assumptions on mP and on F analogous to the-
se in the location case (besides the assumption of syammetry of
F), it was shouwn that, as neoo, B is asymtotically p-dimen-
sionally normally distributed with mean @ and with the cova-
riance matrix Bz(nP,F)z;;1 with Gz(ay,r) given in (2.13)
and Z;ﬂ = 5; C, 5 the matrix Z;n is assumed to be positive
and of the rank p for n¥n_. We see that, the sequence {gnj
being fixed, the efficiency properties of 5n depend only on
the constant Gz(nV,F) and are analogous to these in the loca—
tion case. This further implies that the asymptotic minimax
property of M-estimators over the family %{ of Et-contamina-
ted normal distributions (see Section 2.,1.2), extends to the

Linear model (3.1).



Huber (1973) considered the asymptotic behavior ot L
fn the case that p—poo simultaneously with n. An extension
of MN-estimators to the maultivariate Linear model and {ts asymp-
totic behavior was studied by WMaronna (1976) and Carroll (1978).
R-estimators of regression parameters with randos design matrix
vere studied by Maronna, Bustos and Yohai (1979). Bshadur type
representation of R-estimators in the Linear model was conside~

red by Jurelkové and Sen (1981a,b).

3.2. R-estimators

R-estimators of regression parameters are inversions of l{=
near rank tests of regression. The general rank test of the hy=-
pothesis H : ® = !o in the model (3.1) is based on the vector

Eatd

of statistics
- Rni(!o)

snj(!o) = & (cij-cj) LF(_n;"— ) 4 i®V,eea,p (3.4)
where R .(8 ) is the rank of the residual 8}(20) among 5;(20),
seay S;(So) snd ?(t) is 8 nondecreasing square-integrable
score function, 0 {t {1. DPenote §n($) - (Sn1(£),...,snn($) Y’;
then, under 8=9,, 1t holds Eg Sn(go) = (0 and analogously as

o

in the location case, we may define the R-estimator of 30 as any

solution of the system of “equations”™
snj(.t') : 0 » j",---,P ) (305)

with respect to s.

The statistics (3.4) are invariant to the transtation, so
that they are not able to estimate the main sdditive effect (fae.,
the conponont-oj for which cij'1' i=1,0.4,n). The main additive
effect should be estimated with the ajid of the sfgned rank statis-
tics on the same Lline as the location parameter (cf.Jurelkovs

(1971b).



Adichie (1967), following the ideas of Hodges and Lehsann,
suggested an estimator of (01,02) in the regression model

X, = 8 +02ci+Ei, $1#=1,...,n, based on the Wilcoxon tests and

i 1

derived its asymptotic distribution. Juretkovad (1971a), Koul(1972)
and Jaeckel (1972) then extended the procedure to the p-parameter
regression and to the general Linear rank tests. The three res-
pective R-estimators are asysptotically equivalent and thus they
have thesame asymptotic distributions and efficiencies. The es~-
timators differ in the way how they describe the solution of
(3.5). Jureikova (19712) suggested the estimator R~ as any so-

lution of the minimization problem

p n
z:; Eillsnj(igl : = afn (3.6)

j=1 i=1

and proved that R is asymptoticatly normally distributed with

the expectation ® and with covariance matrix 92( oF)a 51
~ . v n

with 62(\?,F) given in (2.25) and 2;5 = E;E « The assumptions

n

on ? and on F are similar to these in the location case while
the assumptions on (= were rather restrictive in Jurelkovad(1571a)
and some related papers(concordance-discordance condition on the
columns of Qn for néno). Later on Heiler and willers (197%)

proved that the asymptotic normality of En hotds also withoul

concordance-discordance condition.

Jaeckel (1972) suggested R-estimator of & as a solution
of the minimization problenm

n

Z [_\]O(ig-:—i%)-—) -sz\:)gi(v : = min (3.7)

i=1



n
. 1 L
with respect to t ; q& .= ;;; ‘P(g:q). The idea is that

(3.7) could be considered as s measure of the dispersion of
the residuls 5}(5), 29 ,00.,n, instead of the proper va-
risnce of the residuals which is used in the method of Least
squares. Jaeckel proved the asymptotic euqivalence of the so-

tution of (3.7) and of (3.6), respectively, as nwmoo ,

Koul (1971) suggested the R-estimator as a solution,
instead of (3.6) and (3.7), of an appropriate quadratic form
in the statistics snj(g), §®1,00.,p, with respect to t.

AlL three estimators are asysptotically equivalent, as n=oo .,

3e3. L - estimators

While being computionally very appealing in the location
cese, the L-estimators do not have any straight }oruard ex-
tension to the linear model, Let us mention some of the attempts

which appeared in the literature,

Koenker and Bassett (1978) extended the concept of quan-

tiles to the Llinear model. For afixed  , 0< &« < 1, put

() = o = 1{x<0] | (3.8)

Wu(® = xe (0, xer'. (3.9)

Koenker and Bassett defined the o™-th regressfon quantile as

|
the solution L‘(u) = (Tn.'(m),...,'l'np(o\)) of the minimization



n P

;;; Q“(x1 -;;; €4y tj ) : = min (3.10)
with respect to 5 a (t1,...,tpf. They proved thest the ssympto-
tic behavior of the regression quantiles is similar to that of
the standard sample guantiles and suggested the following &~
trimmed least squares estimator :
Remove X, from the sample if é;(ln(°~)) <0 (the i=-th
residual from Ln(a) is negative) or if Si(ln(i-o&)) > G,
121, ece,n; 0<tx<f% ; and calculate the least-squares estimator
using the remaining observations,. The resulting estimator b:
was later studied by Ruppert and Carroll (1980) who proved that
it is asymptotically normally distributed with mean 8 and with
the covariance matrix GZ(PA,F).E;;1 where g;n s E;En and
BZ(M,F) is the asymptotic variance of the A=trismed mean
$n the location case. The concept of regression quantile seems

to provide a basis for an extension of various other L-estima-

tors from the location to the regression model.

Ruppert and Carroll (1980) also suggested another extension
of the x-triumed mean to the linear model. starttng with so-
me reasonable preliminary estimator ko' one calculates the re-
siduals Si(bo) from L , i21,4e0,n, and removes the obser-

vations corresponding to [nm] smallest and Lnuj largest

residuals. The estimator L™ s then detined as the least-

squares estimator calculated from the remaining observations,

The asymptotic behavior of b:* depends on bo and generally

is nct similar to that of the trismed mean; 5:' is asymptotically

equivalent to L provided L = %(In(u.)+ T (1=x)).



Bickel (1973) proposed a general class of one~step L-esti-
mators of g depending on a preliminary estimate of § . The
estimators have the best possible efficiency properties,i.e. ana-
Llogous to those of the corresponding location L-estimators but
they are computionally complex and are not invariant under a re-

parsmetrization of the vector space spanned by the columns of (.

4. Computional aspects-one step versions of the estimators

Besides the L-estimators of location and Hodges-Lehmann
estimator, the estimators considered so far are not very compu-~
tionally sppeasling., They are generally defined in the implicit

form or as & solution of a complex minimization problem.

Thus, it is often convenient to use the one-step versions
of the estimators, which are characterized as follows: we start
with some reasonably good consistent preliminary estimator §
and thew apply one step of Gauss=-Newton method to the equation
defining the estimator. Under mild conditions, it could be shown
that the result of one-step Gauss-Newton approximation behaves
ssyaptotically as the root of the equation. This fdea was applied
by Xraft and van Eeden (1972a,b) to the R~estimators of location

and regression, respectively. Bickel (1975) studied the one-step

versions of the M-etimators in the Llinear model.,

Let us first describe the one-step version of the M=-esti-
sator, Let M. Dbe the Mm-estimator of @ {n the Linear mcdel

(3.1), defined as the solution of the system of equations (3.3).



Assume that the design matrix gn satisfies the condition
1.

"gngn ""'; as n—poo  where 2. is a positive pxp matrix.

~

Then, provided F has an absolutely continuous density f , I{ FX=o

and q) has bounded variation on any compact interval,

Ay, = (17 pm s7heh v (8) + o (1) (6.1)

|
with v (8) = (Y S vaes Y3 (D)) (4.2)
and K’= - Snv(x)f(x)dx L he3)

A
(cf.Bickel (1975), Jurefkova (1977). Let gn be a consistent

preliminary estimator of @ which is shift-equivariant, i.e.

A A
@ (x+c t) = 8, (x)+t, xeR", toRP, and which satisties

“gn -el =0 (0, a5 eox (4.4)

The one-stzp version of M is defined as

n‘=3+(1/n“)z'1c‘v(3) (4.5)
~n ~n Fn v ~n ~n‘~n *
A
where rn is an appropriate consistent estimator of Y’; one
of thepossible estimators of X’ is
AL =102 . -1 -1 | ’
Kn' n “52 2 u “2; ’ En(¥n(52)'!n(31))“ (4.6)

where 31,32

it could be proved that

is a fixed pair of px1 vectors, 31¥E - Then

-F‘“gn-g:u&-; 0, as  n—00 . (6.7)

Let us briefly describe possible one-¢ep versions of R-

estimator Bn defined in (3.4) or (3.7). Assume that



-12(-:” -c )(cik Y GJ;R , as N 0O (4.8)

" _ »
for 1€§,k€p, where ;; [ij] §,k=1, 000, is a positive
satrix. Then, provided tP i{s of bounded variation on any com-
pact subinterval of (0,1) and square integrable, F has an

absolutely continuous density and I(F) <o p It could be pro-

ved (J, relkovd(1971a))

R =9+ (1/n K«) g’ -1 $.(8) + op(n-wz) (4.9)
with $.(8) = (5,4(8),...,5,(9) given in (3.4) and
¢ - S(P(F(x))f‘(x)dx . (4.10)

A
Let gn be the preliminary shift-equivariant estimator satis-
fying (4.4). Then, if we knew X/ , we could consider the one-

step version of 5n in the fora
A -1 A
By = 8, ¢ (1/ny) 7 sa(8), (4.11)

and Jﬁ"sn-ﬂ;‘ E, 0 as n—oo . douever, x’is gene~

rally unknown; Kraft and van Eeden (1972b) suggested to replace

¢ in (4.11) by gctg(t)- LP) 24¢, T{')‘ = §\o(t)dt. The
O

resulting estimator ( say ’ R ) is generally not asymptoti-

cally equivalent to R, it could be proved (cf.HUMAK (1982))

that Vﬁ'lgn-g;‘ Eo ¢ as n—wo if and only if either both

En and 5; are asymptotically efficient (i.e., where LF(t)=

= =t (PN HETI())) or 4 R (and thus also RL) s

A

esymptotically equivalent to the preliminary estimator gn'

In order to get an estimator syaptotically equivalent to ﬁn,



A
we should replace K in (4.11) by an asppropriate estimator g%,
similarly as in the case of M-estimator. One of such possible es-

timators is

A

rn a n-1lz “'32-51 u-1 OHZ' -1(§n( Sz)'ﬁn(,§1))l (‘.12)

where t_,1%

teot, are fixed px1 vectors, t, A t,-

Se Asymptotic relations of M-R-L-estimators

We have seen that the three groups of estimators, though
being defined in different ways, fotlow the same idea: to cut-
off the influence of outliers, to diminish the sensitivity to the
long~tailed distributiona It turns out that these three classes
of estimators are even nearer than one would expect; in fact,

they become asymptotically equivalent as n-——x

The asymptotic relations of M=-L-R estimators were studied
by Jaeckel (1971), Bickel and Lehmann (1975), Jurelkova (1977,
1678, 1981), Hudkové and Jyrelkové (1931), among otherg. Let us

briefly illustrate some of the results on the location submodetl,

Let x1,12,... be the sequence of independent observations,

identically distributed according to the distribution function

F(x=8) such that F(x)+F(-x)=1, xc21. Let Hn be the M=-esti-

mator generated by the function U(x), xe3R1 and R, be
the R-estimator generated by the function L?G), 0<t{1. Then,
under some regularity conditions, Jﬁ(nn-Rn)=op(1) a8 Ne=ep 00
if and only 1f

W(X) = auf(F(x)), a>o0 (5.1)



for almost all xeR'. The relation (5.,1) means that, given

the distribution F, there exists an M-estimator to every R-
estimator (and vice versa) such that both estimators are asyepto-
tically equivalent. Being dependent on the unknown d.f. F, the
relation (5.1) does not enable to determine the value of the M-
estimator once we have calculated the value of R-estimator; it
rather indicates which type of M-estimators belongs to a given

type of R-~estimators etc,

Let L be the L-estimator (2.34) generted by the function
J(t) such that J(t) = J(1-t)20, G<{t{1. Then, under some smooth-
ness conditions on J and F, JF(Ln~Mn) = ob(1) a3  Newyoo

for the M-estimator 'n generated by the function

’*}(x) = §J(t)(1[l-'(x)‘-‘t] -t)dF-1(t), xeR1. (5.2)

0

Let L be the x-trimmed mean (2.31); then JETLn-Hn)=

= op(1) as n—poo  where M~ is Huber estimator generated by

ﬂ) given in (2.4), more precisely,

o) it x¢F ()
(5.3)
A{J(x) = X if F'1(oa)5x£F'1(1-oa)
P11 1 x>F N (1=) .

1f Lo is 2 linear combination of single sample quantiles,
k " -
L, :12:131 3 xn:[npj1 (cf.2.33), then JﬂkLn-hn) = 05(1)

where ", is the M-estimator generated by the function



k
YOO == 2 [ayacr e ] (1 {r0ey] e, (5.4)

xe&R1. Especially, the M-estimator countrepart of the X -

Wwinsorized mean is generated by the function

-1 ) -1
F "X) - — for x{F “(x)
( f(I"_qcx)) <
ﬂF (x) =\ x for F-lﬁx)éxéF'l(l-q) (5.5)
-1 -1
k? (lee )+ = T for xD>F “(1-0).
£(F " (1l=x)

The relations of R-and L-estimators could be derived by con=
bining the relations of M- and R-estimators and these of

M= and L-estimators, respectively,
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