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The National Museum and the
development of statistical science

Prokop Závodský

On the 15th of April 1993 the Czech cultural public remembered the
175th anniversary of the foundation of the Patriotic Museum in Bohemia
(now the National Museum) in 1818.It is less known that the significant
articles on the developement of political arithmetics (a predecessor of
contemporary statistical science) were already publishing in the first
volumes of museum journals.

The situation at Prague University till the year of 1848 (teaching was
done in German) did not at all encourage the developement of original
scientific thinking, the scientific work of professors was not necessary
but inconvenient. Prescribed textbooks, in most cases rather obsolete,
were usually written by Austrian authors. G. N. Schnabel (1791–1857),
a professor of statistics and at that time the most important persona-
lity at the Law School, wrote a great number of remarkable statistical
publications. In spite of that he was forced to teach from old official
textbooks written by Austrian professors Zizius and Bisinger.

The Bohemian Museum, which was founded by a group of aristo-
cratic enthusiasts as a provincial scientific institution, started in 1827
publishing the German and the Czech Museum Journals (F. Palacký,
a famous Czech historian and politician of Middle Europe, was a long-
time editor of the journal; today his portrait forms a main motif on our
banknote of one thousand crowns value). The museum partly took the
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role of the university as an organizer and supporter of scientific develop-
ment. Both journals were also appretiated by J. W. Goethe in a critical
journal issued in Berlin. At the beginning the German Monatschrift der
Gesellschaft des vaterländischen Museums in Böhmen was the repre-
sentative organ of the Museum Society. With time the Czech journal
(Časopis Českého Museum) was increasing its standards. The German
journal was published monthly and was orientated on the provincial pa-
triotism, which transformed into modern czech and german nationalism.
The journal stopped publishing in 1831.

In the first volumes of the Museum Journal one can find reviews and
news from statistical literature (by prof. Schnabel), regular reports on
meteorological observations in Prague elaborated by means of elemen-
tary statistical methods (by prof. Hallaschka) and contributions to eco-
nomical statistics of Bohemia (gubernial councillor K.A.Neumann, well-
known natural historian The Earl Kaspar von Sternberg, prof. Schnabel
and others were among the authors).

F.Palacký also published in the German Museum Journal two remar-
kable analysises of statistical datas on the population of Bohemia (Gra-
dation der Bevölkerung Böhmens seit den letzen 60 Jahren, Statistisch–
topographische Notizen über die Bevölkerung Böhmens im J.1830). Va-
rious people can be surprised by the author’s knowledge of contemporary
statistical literature, as well as of simple methods of political arithmetics
(Palacký writes politische Rechenkunst).

It was a young graduate from the Prague and Vienna Universities,
Karl Czoernig (1804-1889), the first one in our country who was con-
cerned with the theoretical questions of political arithmetics. In 1831 he
published in the German Museum Journal a commented translation of
the essay from the English journal Edinburg Quaterly Review completed
by his own extensive introduction.

Already Czoernig’s attempt to define political arithmetics as a scien-
tific branch was interesting: “Political arithmetics deals with those phe-
nomena in the life of inhabitans of the state that can be expressed by
quantitative relations. . .” He places political arithmetics among “state
sciences” next to its “older sister” – statistics. Czoernig also discer-
ned some limitations of the developement of political arithmetics as a
scientific branch. This was discovered before its integration into modern
statistical science which occured in the following decades. He points out
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not only an entire lack of exact and reliable data ( if they were found out,
they have often been concealed) but also an unclear conception of this
branch, developing itself largely out of universities – due to amateurs and
advisers of insurance companies. Czoerning, who used remarkable me-
thods of data analysis already in his older work on Liberec ( smoothing
of time series, seasonal indexes), explains further the principle of the
construction of life tables and the calculation of certain derivated cha-
racteristics (probability of surviving to specific age, expectation of life).
He talks about methods of the construction of life tables used by Wes-
tern political arithmeticians (W. Kersseboom, A. Déparcieux, R. Price,
J. Milne). Czoernig’s work indicates the possibility of inspecting the de-
pendance among numerical variables – probably for the first time in our
country – (he uses the research of a French statistician L.R.Villermé on
the dependance of mortality in Parisien’s districts on the ratio of the
poor).

In 1841 the imperial court appointed K. Czoerning a principal of
the statistical service. The fact that this post was reached by a man of
a low birth (in contrast to other state offices) is worth remembering.
He conducted Austrian statistics for almost 25 years ( from 1852 as
Freiherr von Czernhausen – according to his native village Černousy
near Frýdlant).As a motto to his coat of arms he chose a device of F.
Bacon Scientia est potentia).

Franz Alois Stelzig (1784-1856) was another representative of political
arithmetics in the 20s and 30s. He was a physician general in the Prague
Old Town and a graduate from the Prague Medical School. One of his
most interesting works was a two-volume publication entitled Versuch
einer medizinischen Topographie von Prag (1824). It was the first work
on medical topography in our country. He also wrote an extensive essay
published in the Museum Journal dedicated exclusively to the analysis
of demographic datas (Resultate der Geburts – und Sterbeverhältnisse
– 1830).

The publishing of Bohemian life tables (1800 – 1828) was a result
of the essay. The author confronts them especially with life tables of
J. P. Süssmilch, a famous Prussian political arithmetician of the 18th

century. He also argues with Süssmilch’s convinction of constancy of
discovered demographic regularities in time and space ( “divine order
in transfomations of human mankind”). This refers to the consequences
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of medical progress ( vaccination, various hygienical measures) and to
different reproduction situations in various regions ( city versus country)
and in various groups of population, etc.

Stelzig explains as well a principle of various kinds of life insurance,
life annuities, tontines, widow’s and orphan’s institutions, and he dis-
cusses the use of some life tables functions and other statistical methods
for activity of these institutions.

Biometrics: Notes of a biometrician

Stanislav Komenda

The source of this paper was the experience of the statistician having
left Charles University, Faculty of Mathematics and Physics at the very
end of the 1950s – to enter the world of physicians. The reason had
the name of statistical applications to carry out. No complex system of
knowledge is to expect in the paper – rather short commentaries at the
margin of the interaction between the biomedical environment and the
statistical viewpoint.

Biometrics is characterized by its openness for the principles and
methods to apply in data analysis. It means, on the other side, that the
majority of biometrical methods can be met to support data analysis in
the very differing areas of human intellectual activities – from archeology
on the one-hand side to economic a engineering disciplines on the other
side.

There is evidence that the research of the problems in very distant
intellectual regions led to the discovery of the same statistical principle.
Just that is the best witness of the unity of science. As an example
the story of the Kaplan and Maier method of analysis of the censored
survival data can be given: their common paper published almost 40
years ago became the most frequently cited statistical paper at all. The
motivation to study the problem was the survival of cancer disease in
one case while in the 2nd case it was the survival of vacuum tubes.

Biological and medical sciences inspired the discovery of numerous
principles of statistics and statistical induction. Among the statistical
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“Fathers Founders” were the personalities well known as the specialists
in biology, medicine and agriculture. Francis Galton, who introduced
quantitative methods into biology, Ronald Aylmer Fisher, researcher in
eugenics and genetics, William Sealy Gosset, researcher and manager
in the Dublin brewery of Guinness – to mention only three of many.
Biological “grounds” can be identified also in the invention of the fa-
mous “normal” probability distribution. It was Adolphe-Lambert Que-
telet who recognized the normal curve to be an excellent model to fit
the frequency of occurrence of the stature size classes among the Scotch
soldiers. An outstanding member in this gallery is the founder of gene-
tics Gregor Mendel, the priest educated at the University in Olomouc,
whose experiments carried out in Brno proved the surprisingly excellent
fit with the binomial model.

An extraordinarily significant proof for the power and efficiency of
the statistical reasoning is the story of doctor Ignaz Filip Semmelweis,
assistant professor of the obstetrical clinic in Vienna. This story dates
back to the middle of the nineteenth century, about fifty years before
the inductive statistics started its knocking on the door of the empirical
science.

Considering over the unexplained difference in the childbed fever ma-
ternal mortality (over 10% at the 1st clinic educating medical students
against 3–4% at the midwives educating 2nd clinic) Semmelweis suspec-
ted the post-mortem dissections practised by his colleagues and students
as the possible reason of the childbed fever. Due to hygienic measures
recommended by him maternal mortality at the 1st clinic decreased
significantly – which entitled his opinion – although the final reason,
bacterial agens responsible for the disease, was discovered only 30 years
after that by Pasteur and Rosenbach.

The name of biometrics itself was created in the way similar to
many others: psychometrics, anthropometrics, econometrics, sociomet-
rics, educometrics – and demonstrates the same semantic move as known
from the geometry. In the contemporary interpretation the stress is not
so much on the primary measurement, but more on the analytical, ma-
inly statistical methods of evaluation of what the measurement yields.
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Interaction between the specialist and the statistician is now under
the significant influence of the computer. While 30 years ago this inter-
action of the statistician and his/her client could be summarized as the
three-step process

(a) choice of an adequate experimental design and the model of
statistical evaluation

(b) technology of the computations needed
(c) interpretation of the results derived,

nowadays this interaction reduces itself to the 1st and 3rd steps only. The
burden of the intermediate computations moved from the statistician to
his/her computer.

This question is in the close correspondence with the optimization of
the statistical education of non-statisticians. Of course, there exists a
coincidence in the opinion that teaching principles (like data reduction,
inductive reasoning) has the priority to teaching particular techniques.
On the other side, no theoretical principle can be implemented in the
non-statistical mind without demonstrating of its application in the par-
ticular situations suitably selected.

Due to the openness of biometrics the paper like that hardly could be
able to exhaust the topic anyway. The experience evaluated is doubtles-
sly conditioned by the specific circumstances under which the Depart-
ment of Biometrics of the Faculty of Medicine, Palacký University in
Olomouc, plays its part. Among the disciplines relying on the statistical
support not only those of medicine take the part. So let us mention some
less standard and more specific applications of this kind.

Psychometrics

Cooperation on the long-term program of testing of the effect of psy-
chotic drugs on learning offered an opportunity to apply some formali-
zed, probabilistic models of the paired-association learning and, particu-
larly, to study the problem how to measure the information loss induced
by replacing the primary data by the reducing statistical characteristics
of learning. The primary data is necessary to reduce – for the purpose
of easier manipulation – this reduction being mainly that of the data
dimension. As a typical example the replacement of the sequence of
correct and incorrect responses by the length of the 1st run of incorrect
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and the 1st run of correct responses can be mentioned. Fisher’s measure
of expected information on the distribution parameter as contained in
the sample space of the primary data and that contained in the sample
space of the values of these reducing characteristics proved to be the
valid and useful index of the information lost.

Educometrics

Knowledge assessment is among the basic problems of the general
didactics and of the common educational practice, as well. Without it no
feedback between the teacher and the subject taught would be possible.

Stochastic model of the situation postulates the following three the-
oretical concepts of the knowledge. The 1st one is the concept of the
“actual knowledge”, non-accessible for the direct, immediate measure-
ment. The actual knowledge is supposed to influence significantly the
behaviour of the testee, as manifested through his/her test score. The
object of assessment should be the actual knowledge – while the as-
sessment rules refer to the knowledge manifested: the space of possible
responses of the testee being decomposed in the disjoint and exhaustive
way into the system of subsets such that each of them corresponds to
just one level of the assessment scale.

Between the level of the subject’s directly accessible responses (i.e.
test scores) there is an intermediate level of his actual knowledge of the
test items (it means not of the whole topic) as expressed by the number
of test items the testee knows (or does not know). Also at this level
no direct measurement is possible – due to the mechanism of guessing
which enables the testee to reach the correct solution by chance. In
every decision-making scheme the so-called operation characteristics of
knowledge assessment can be considered (and computed, in case of a
school-achievement test): for the actual knowledge given, to each grade
(assessment level) there is the probability that the subject with this
knowledge will reach just this grade. Thus the operation characteristics
are the functions of the actual knowledge. In the model of the school-
achievement test the actual knowledge plays the role of the parameter
in the conditional distribution of the test score, i.e. of the subject’s
behaviour. Such an access makes it possible to quantify the notion of
the “assessment injustice” and also to consider the optimization and
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efficiency control of the knowledge assessment by means of the size of the
test, number of grades applied and by the modification of the assessment
rule.

Anthropometrics

In physical anthropology a series of situations is known suitable for
the statistical methods to be applied.

One of them is the case of the so-called growth standards where the
“normal” growth and development of children and youth is to quantify.
The utilization of statistics, distribution functions and percentiles to
determine and specify standards (norms) is a particular chapter in the
methodology of research.

Within the last decades statistics is invited by the archeologists to
cooperate when the anthropological problems are studied on the osteo-
logical remains. Among the questions to solve the following ones are of
significant importance:

(a) age determination of the subject to whom the bone remains
belonged

(b) sex determination of such a subject
(c) stature (body height) reconstruction
(d) identification of the subject based on the presence or absence of

certain specific features.

Similar problems are presented to the statistician also from the side
of forensic medicine, in the cases of juridical expertises. The respective
decision-making is supported by the results of the multidimensional sta-
tistical analyses (discriminant, cluster and factor analysis, multinomial
correlation and regression). An important heuristic problem is the ap-
plicability of the analyses carried out on the recent bone material also
for the decision-making in case of the remains older by centuries and
millenniums. In the context of more numerous findings (Old Egyptian
cemeteries, Old Slavonic cemeteries) sometimes the terms of paleosta-
tistics and historical statistics are being used.

Another important region of anthropological standardization is ergo-
nomics, which is the discipline studying the optimum fit of the living
and working conditions to the parameters of human anatomy, physi-
ology and mind. Working place design of the operator (airplane pilot
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cabin, car driver seat), but also the sizing system of the products of
the industrial mass production (clothes, underwear, shoes, furniture,
tools) are the problems of this kind. In contradistinction to the tradi-
tional craftsman production where the fit of the item to the customer
was possible to be made repeatedly, the industrial mass production is
producing its items for anonymous consumers – the members of cer-
tain population. What can be used to support the production design
are the statistical parameters of this population: mean values, variances
and correlations of body dimensions important from the viewpoint of
the construction of the particular product. The solution of the problem
is a multidimensional lattice situated in the space of the basic body
dimensions. Besides this lattice of the type figures the system of regres-
sion functions is derived which enable to compute the values of other
dimensions corresponding to the particular type figures.

Similar problem is to solve in the area of school hygiene when an
optimum size system of chairs and desks is to determine – in dependence
on the body height of school children. From the known variability of this
body dimension the number of size alternatives is possible to compute
for each classroom.

The regression integrating time can be find also in the classical crimi-
nological problem – when the body height of the subject is to forecast
by means of his/her known foot length (as derived from the trace left
on the ground).

An interesting part of biometrics is the so-called adequate body mass
determination. The problem has its history dating back to the French
physician Paul de Broca, whose proposal was to derive the adequate
body mass (in kg of body weight) W from the known body height X
(in cm) by means of the equation q

w(x) = x− 100,

where (x,w) are body height and body mass of the subject. When accep-
ted, this equation is to interpret as the regression function (x – regressor,
w – regressand) with the regression coefficient equal 1 and having the
physical dimension kg.cm−1 and the constant member of the value 100
with the dimension kg.

Within the last decades the standard evaluation of the respective
overweight or obesity is supported by the so-called BMI2 (Body Mass
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Index) W/X2. Through this index body mass is related to the body
surface. Since the higher efficiency is declared in comparison with the
traditional proposal by Broca, a statistical verification has its reason.

The procedure we have introduced is based on the following princi-
ples:

(1) By the body mass adequacy its adequacy to the skeletal di-
mensions is meant

(2) The relationship between the skeletal dimensions and the body
mass should be derived by means of the analysis of the relations
actually existing in the reference populations in which these
relations are to be a priori considered adequate; the participants
of the Czechoslovak Spartakiade 1985 (public physical training
exhibitions) were taken as these populations

(3) As the prediction efficiency of the methods by means of which
the adequate body mass was to forecast – the relative decrease of
the body mass variance was taken, in the conditional probability
distribution of it, in relation to the unconditional, initial body
mass variance.

Statistical properties of the following indices were investigated:

Q = W/X G = (W/X2)103 R = (W/X3)106

D = W/Y E = (W/Y 2)4π103 F = (W/Y 3)6π2103

C = (W/XY )103 K = (W/XY 2)4π103

where W is the body mass in kg, X and Y are stature and chest
circumference both measured in cm. Physical dimension of these indices
is that of the density human body reaches in the respective virtual
skeletal space: on the line, inside the square and inside the volume of
the cube determined by the statureX , on the circle circumference, inside
this circle and inside the sphere determined by the chest circumference
Y , and on the surface and inside the volume of the cylinder of the height
X and the circumference Y .

The forecasting formulas through which the expected body mass
w(x), w(y) and w(x, y) is to derive in dependence on the respective ske-
letal space (x, y or both x and y given) were specified by the linear
regression where always just one parameter was to estimate. The analy-
ses carried out concluded that the index G now recommended generally



11

by the specialists in the nutrition, hypertension, diabetes, cardiovascu-
lar disorders, arthritis and vertebrogenous disorders actually reaches
somewhat higher efficiency (in the adult populations) when compared
with the index Q. Nevertheless, this efficiency is remaining low. Moreo-
ver, completing of the prediction formulas by other skeletal dimensions
is able to improve prediction efficiency twice to three times.

There is an objection against the application of the variable Y in
the prediction mechanisms – due to that Y is not a purely skeletal di-
mension. As a response to this challenge the indices L and M were
introduced as an analogy to the indices C and K, where the chest cir-
cumference Y was substituted by the transversal and sagittal diameters
T and S of the chest,

L = (W/X
√
TSπ)103 M = (W/XTSπ)4.103

As we have found, an introduction of chest diameters T and S into
the prediction formulas L and M led to somewhat lower efficiency in
comparison with the indices C and K. Nevertheless, this efficiency is
always twice over that reached by the formulas based on the known
value of X only.

Author’s address:
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On the coefficient of determination: simple
but . . .

Jan Ámos Víšek

Abstract An example of possible misleading role of the basic
characteristics of the classical LS regression analysis is given.
Another example using high breakdown point estimators de-
monstrates that in the case of contaminated data various esti-
mators may give considerably different estimates. Consequently,
a simple solution, routinely leading to the true model, need not
exist. A proposal of one possibility how to cope with the si-
tuation is given and another is refered to.

Key words: Classical and robust regression analysis, studentized estimates
of regression coefficients.

AMS classification: Primary 62J20; secondary 62J05;

Introduction

There are so much papers devoted to the behavior of the coefficient of
determination (see e. g. [9],[10],[21] & and the all monographies devoted
to regression analysis, e. g. [3] or [20]) that to try to write something
more is not only somewhat superfluous but just an outrageous imper-
tinence. However, I secretly hope that some readers may generously
depress their sorrow for the wasted paper and they will read the paper
up to the end.

The coefficient of determination is, together with studentized estima-
tes of regression coefficients and with Fisher-Snedecor F -statistic, one
of the basic characteristics of classical regression analysis. It is easy to
see why. It is posssible to read nice (and relatively simple) lectures on
these characteristics, it is a joy to derive their distributions and after
all, the topic may be ellegantly utilized for the examination of students.
That is why these characteristics have found their fix place in many
monographies, PC-libraries and temporarily also in the minds of some
students.

These reasons probably caused that people have constructed the
tables for the corresponding distributions and they established (by the
way, really tight, see [1]) approximations to them, which may be used on
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PC (if, by an unexplainable coincidence of circumstancies, it happened
that no error penetrated into the implementation of the corresponding
algorithms). The frequency of the references on these distributions (t
and F ) can be beaten only by the frequency of references on the normal
law. The latter, although empirically indistinguishable from t (even for
rather low degrees of freedom and relatively large samples) allows to
derive even more interesting results which are assumed to be a treasure
of Her Majesty Statistics. Perhaps it is (also) due to the fact that the
warning of Sir Ronald Aylmer Fisher (see [5]), pointing out that the ef-
ficiency of these results may considerably decrease (even down to zero)
when data are governed by the t-distribution instead of by normal one,
has stealthily disappeared from the textbooks.

The above claimed simplicty of some statistics may however appear to
be equally betraying as peats, see [4]. In the Table 1 the data simulated
according to the model

(1) Yi = 10 + 11 ·Xi1 + 12 ·Xi2 + ...+ 20 ·Xi10 + εi, i = 1, 2, ..., 18

are gathered. The values of the regressors Xi’s were generated as inde-
pendent realization of uniform random variable from [−2, 2]10 with one
coordinate shifted about +10 or −10 and the random fluctuations ε’s
have the distribution of the normal random variable with mean zero and
variance σ2 = 0.04. It means that the fluctuations are of so small mag-
nitude that data are nearly “deterministically” goverened by the linear
model, so that the estimation of the regression coefficients is to be very
easy. Finally two points, namely points 2 and 12 were contaminated.
One may immediately verify that some coordinates of these points were
changed and it was done in a such way that it represents 6 false hits
among 1 000 hits which were necessary for the input of data (e. g. an
error in the decimal point). Maybe that at this moment some reader
may put a question why just the data of this character was used (those
who are not interested in the answer on this question let go directly to
the label ♥).

In 1979 R. A. Maronna, O. H. Bustos and V. J. Yohai [11] showed
that there is among the solutions of the equations

(2)
n∑

i=1

ψ


Yi −

p∑

j=1

Xij βj


Xik w(Xi) = 0, k = 1, 2, . . . , p
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(where Xi = (Xi1, Xi2, ..., Xip)T ) at least one which has the breakdown
point smaller than 1

p . In the other words, if the system (2) has unique
solution, then (somewhat paradoxically) corresponding M -estimate has
for larger dimension the breakdown point rather small (and notice that
we speak about weighted M -estimators which obtained, as a gift into
the cradle from the Fates (Hampel, Krasker, Welsh etc., see e. g. [6]) a
possibility to “depress” or “weight down” those data, which have in the
factor space too “individualistic” positions). Recalling this result, we
may ask what is a (geometric) reason for this strange fact ? Earlier than
giving an explanation, let us remind that the breakdown point is the
smallest number of points (divided by the number of all observations)
which is necessary to change (in an arbitrary way) to cause explosion
(or implosion) of the estimate.

Now let us consider a cloud of some regression data, let us say near the
origine. Our counterplayer (nature) in order to damage the value of the
estimate may change the first coordinate of the m1 points, making from
them leverage points. Due to large values of Xi1’s (for corresponding
i’s) the influence of these m1 points on the solution of the first equation
in the system (2), i. e. on the equation

n∑

i=1

ψ


Yi −

p∑

j=1

Xij βj


Xi1 w(Xi) = 0,

will be larger than the influence of other points. Since we do not know
whether these leverage points are good or whether they are simulta-
neously outliers, we give them small weights. Now the counterplaying
nature will increase the (absolute) values of the second coordinate of
some m2 points, so that we will give them also small weights, etc. Fi-
nally we will be forced to give small weights to

∑p
k=1mk points. However

this sum cannot be larger than n− p− 1, to have at least p+ 1 “good”
points for determination of the “true” model (if it happens by unbelie-
vable stroke of good luck that they will have large weights). It implies
that at least for one k we have mk

n ≤ 1
p .

♥ Let us return to our data, they are as follows:

Table 1
Data governed by model (1)
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case X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y

1 9.39 -0.74 0.15 -0.58 1.39 1.99 0.28 -0.75 1.12 0.08 165.2
2 -1.22 0.55 11.83 0.37 -0.13 0.08 31.58 0.21 1.29 -11.7 9.4
3 0.62 -10.2 1.44 0.04 0.93 -0.70 0.52 0.52 0.75 0.46 -42.2
4 -1.22 0.55 1.83 0.37 -0.13 0.08 11.58 0.21 1.29 1.66 289.4
5 -1.35 -1.37 -0.71 0.55 -1.42 0.22 0.39 10.12 2.00 0.69 200.4
6 -1.21 0.78 0.83 1.90 -1.43 -0.81 -0.08 -0.56 -11.4 1.95 -179.0
7 -1.35 -1.37 -0.71 10.55 -1.42 0.22 0.39 0.12 2.00 0.69 160.4
8 0.07 11.95 0.73 -0.55 -0.54 -0.87 -1.25 -1.46 -1.52 -0.45 49.0
9 0.03 -1.36 -1.39 -1.52 -11.1 -0.36 -0.45 1.05 1.10 1.49 -156.1
10 0.07 1.95 0.73 -0.55 -0.54 9.13 -1.25 -1.46 -1.52 -0.45 88.0
11 10.03 -1.36 -1.39 -1.52 -1.15 -0.36 -0.45 1.05 1.10 1.49 103.9
12 0.62 -0.18 1.44 0.04 0.93 -10.7 0.52 0.52 10.75 10.46 181.7
13 1.23 -1.04 0.65 -11.1 1.77 1.23 -1.08 -1.57 1.61 0.61 -93.7
14 1.23 -1.04 0.65 -1.10 1.77 1.23 -11.1 -1.57 1.61 0.61 -123.7
15 -0.73 -0.16 -1.57 0.92 -0.99 -1.90 0.45 -11.6 -1.18 -0.93 -294.4
16 1.10 -0.40 -8.29 -0.65 0.92 -1.40 -1.70 -0.30 -0.96 1.44 -131.5
17 -0.98 -1.14 1.23 -0.34 -0.46 1.30 -1.12 1.01 -1.42 11.68 216.3
18 0.61 1.59 -0.19 -0.52 0.48 -1.97 0.96 0.47 1.67 -11.2 -165.7

Diagonal elements of the projection (hat) matrix are

Table 2
Diagonal elements of the projection matrix

case 1 2 3 4 5 6 7 8 9
diag. 0.49 0.85 0.51 0.27 0.55 0.83 0.60 0.64 0.94

case 10 11 12 13 14 15 16 17 18
diag. 0.57 0.55 0.80 0.59 0.45 0.65 0.74 0.44 0.54

Since the value of the ninth element is 0.938 a suspicion may appear
that this point is not O. K. . Such suspicion however disappears when
we find in some textbook that a recommended critical value for the
diagonal elements of hat matrix is 2p

n = 1.22, see e. g. [2], [3] or [20].
On the other hand, only exceptionally one can find in the textbooks
an explicit statement that the diagonal element of the hat matrix may
attain a value out of interval (0, 1) only in the case when the evaluation
of it contains an error. That is why it is larger than 1.22 only rarely. May
be that someone can object at this moment that in some monographies
we may find a recommendation that te diagonal elements of hat matrix
should be smaller than 0.2, see e. g. [7]. This requirement implicitly
includes an endeavour for a balance of number of observations and of
the dimension of problem. Since we wanted to keep the size of paper
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in a reasonable limits we could not consider data containing too much
points, we have to omit this ask. A more complete discusion devoted to
an acceptable values of diagonal elements of hat matrix can be found in
[3].

Suma sumarum: We have not too large data and we would not like to
waste them, and so we will give a pardon to the value 0.938 . Moreover,
we are in a God-like position, so that we know that the point 9 is
not a contamination (an objection that we have too small number of
observations will be discussed at the end of paper).

After an application of the least squares we obtain the estimates of
the regression coefficients and the correponding P -values.

Table 3
LS-estimates and corresponding P-values

β0 β1 β2 β3 β4

estimates -5.82 10.67 11.56 1.916 14.39
P -values 0.782 0.119 0.047 0.814 0.025

β5 β6 β7 β8 β9 β10

estimates 14.11 20.28 9.240 18.71 16.29 21.26
P-values 0.075 0.013 0.038 0.007 0.022 0.001

Coefficient of determination attained the value .919, the parametr of
scale was estimated as σ̂ = 75.3 and the sum of squares is 39 674.8.

We may try to delete those regressors which are indicated to be in-
significant on the level of 5% (which means: intercept, X1, X3 and X5)
and then we recalculate the hat matrix. The diagonal elements now look
like this:

Table 4
Diagonal elements of the hat matrix for the reduced data

case 1 2 3 4 5 6 7 8 9
diag. 0.05 0.80 0.41 0.19 0.41 0.68 0.52 0.55 0.02

case 10 11 12 13 14 15 16 17 18
diag. 0.50 0.02 0.76 0.52 0.16 0.57 0.03 0.39 0.40

The value of 2p
n is now .777 and it hints that the point 2 could be

“leverage point”. Deleting this point an recalculating once again the
estimates we obtain
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Table 5
Diagonal elements of the hat matrix for data after deletion of point 2

case 1 3 4 5 6 7 8 9
diag. 0.05 0.41 0.55 0.41 0.69 0.52 0.56 0.02

case 10 11 12 13 14 15 16 17 18
diag. 0.50 0.02 0.77 0.52 0.49 0.57 0.04 0.43 0.43

and 2p
n = 0.824. Further

Table 6
LS-estimates of the coefficiennts and corresponding P-values

β2 β4 β6 β7 β8 β9 β10

estimate 10.43 10.34 22.42 16.84 16.52 20.29 18.15
P-value 0.069 0.079 0.006 0.008 0.011 0.006 0.002

From Table 6 it follows that perhaps regressors X2 and X4 are still
insignificant. Deleting them we finally arrive to

Table 7
LS-estimates of coefficients and corresponding P-values

β6 β7 β8 β9 β10

estimate 19.93 18.09 16.15 17.00 16.97
P-value 0.026 0.012 0.027 0.029 0.007

So we have finally obtained a model in which all regressors are sig-
nificant. The coefficient of determination a little bit decreased to 0.736
but nevertheless it is above traditional magic boundary of 60%. So we
may be satisfied. The only shortage of the analysis is that it produced
a completely false model.

On the other hand, applying least trimmed square estimator

β̂LTS = argmin
β∈R11

15∑

i=1

r2
(i:18)(β)

where r2
(i:18)(β) is the i-th order statistics among r2

i (β) = [Yi − β0−
−∑10

i=1 Xijβj ]2, i = 1, 2, ..., 18, we obtain the estimates of coefficients
together with P -values

Table 8
LTS-estimates of coefficients and corresponding P-values
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β0 β1 β2 β3 β4

estimate 10.13 11.01 12.03 12.98 14.02
P-value 0.000 0.000 0.000 0.000 0.000

β5 β6 β7 β8 β9 β10

estimate 15.01 15.93 17.01 18.03 18.97 19.99
P-value 0.000 0.000 0.000 0.000 0.000 0.000

The estimate of scale is σ̂ = .0361.
It seems that as a conclusion we could recommend:

Let us use the procedures with high breakdown point (at least for the
first diagnostics), may be in the second step accompanied by some M -
estimator, and let us refuse least squares! Unfortunately, this re-
commendation can be misleading as well as the belief in the
almighty of market economy. It is not difficult to demonstrate that
the high breakdown point procedures may give also result which may be
strange, e. g. we may easy find data for which various high breakdown
point estimators give rather different results. Let us give one example. To
create a little more complete idea about a possible diversity of estimates
we shall include into the following table results of several methods. To
be sure that the paper is understandable without requiring too large a
priori knowledge, let us recall the definitions of them. Let us put

(4) ri(β) = Yi −
p∑

j=1

Xij βj , i = 1, 2, ..., n h =
[n

2

]
+
[
p+ 1

2

]

and let r2
(i:n)(β) be the i-th order statistics among r2

i (β), i = 1, 2, ..., n.
Further, let us recall that (with h given by (4))
(14)

β̂LS = argmin
β∈Rp

n∑
i=1

r2
i (β), β̂LMS = argmin

β∈Rp
r2
(h:n)(β),

β̂LTS = argmin
β∈Rp

h∑
i=1

r2
(i:n)(β), β̂(ρk) = argmin

β∈Rp
n∑
i=1

ρk(ri(β))

with ρ1 – Huber’s function (with ψ1(t) = dρ1(t)
dt = t for |t| < c and

ψ1(t) = c · sign t otherwise) and ρ2 – Hampel’s function (with ψ2(t) =
ψ1(t) for |t| < 1.2c, ψ2(t) = [c− 5

9 (t−1.2c)] ·sign t for 1.2c < |t| < 3c and
zero otherwise). For both Huber’s and Hampel’s functions c was equal
to 1.2. Finally, let

β̂L1 = argmin
β∈Rp

n∑

i=1

|ri(β)| and β̂TLS = argmin
β∈Rp

∑

i∈Iα
r2
i (β)
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where Iα is the index-set of points obtained by the symmetric trimming
according to regression α-quantiles of Koenker and Bassett [8] (value of
α was 0.2 to trim away the same number of points as was trimmed by
LMS and LTS, i. e. n− h = 21).

Example 1. : US Crime Data (47 cases, [12]).

These data are for the crime in U.S.A., and they concern 47 states.
The goal of the investigation was to find how the crime rate (number
of offence known to the police per 106 population) in 1960 depended on
age distribution, on the fact whether the offence was accomplished in
southern state, on the educational level, on the police expenditure, on
the labour force participation rate, on ratio of males in population, on
the total number of population in the state, on the ratio of whites in po-
pulation, on the unemployment rate, on the median family wealth and
on the income inequality. The regressors were selected in the following
way: The variables which appeared in the complete LS and in the com-
plete LTS analysis as “highly” insignificant have been deleted (P -value
over 0.2). Then LS and LTS analyses were repeated and the variables
which were still significant were taken into account (of course, we do not
want to claim that it is the only possibility how to choose). So that the
variables used in the example are: Age distribution (the number of males
aged 14−24 per 103 of total state population), Educational level (mean
number of years of schooling of the population 25 years old and over),
Police expenditure (the per capite expenditure on police protection by
state and local government in 1960) and Income inequality (the number
of families per 103 earnings below one half of the median income). Their
P -values for LS model are 0.0413, 0.032714, 0.03773, 0.06 and 0.03137
(the “power” means number of zeros before the first significant digit),
and for the LTS 0.06, 0.03353, 0.06, 0.06 and 0.06.

Table 9
US Crime Data

Method LS LMS LTS TLS L1 Huber Hampel
intercept -424.922 -234.216 -424.369 375.158 450.269 406.826 403.081
Age 0.760 0.472 0.633 0.541 0.426 0.476 0.477
Education 1.660 0.294 2.099 0.337 -0.018 0.241 0.281
Police 1.298 1.675 0.817 -1.875 -2.096 -2.073 -2.119
Income 0.641 0.464 0.665 -0.912 -0.795 -0.819 -0.781
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First of all, we should say that when clasifying differences among
the estimates we should not take into account the differences among
the estimates of intercept because these differences may be large due to
small differences among the estimates of slopes together with position of
data in the factor space (imagine data which are far from origine). The
differences between LTS- and LMS-estimates of coefficients, expressed
by their ratio, are 1.34, 7.14, 0.49 and 1.43, respectively. The coefficient
of determination in LS analysis is 70.0% and in LTS even 91.4%.

And it is not difficult to find an example of one dimensional data for
which LMS- and LTS-estimates are orthogonal each to other (see e. g.
[13]) or [18]).

So let us recapitulate seemingly terrible situation:
“Failure” of the high breakdown point estimators as well as of the classic
ones and a misleading behaviour of simple characteristics, as coefficient
of determination and studentized estimates of regression coefficients, can
be interpreted from a little bit more general point of view (see [16]). Sta-
tisticians, but not only them, consider some basic assumptions (if you
want principles or axioms) which are usually supported by convinsing
heuristic arguments, and reasonable requirements (e. g. maximization of
likelihoods, minimization of sum of squares, consistency, maximization
of the value of breakdown point, minimization of maximal bias (maxi-
mum taken over some family of distributions, efficiency, minimization of
some loss, etc.) and they are permanently inventing new ones (see e. g.
[14], otherwise they cannot obtain grants). These heuristic requirements,
reformulated into some mathematical criteria, are naturally directly re-
sublimated into some plausible properties of resulting procedures (after
all, the plausibility or quality of results is “measured” in fact according
to a criterium which is based on the same ideas which were included
into principles and axioms, so that the success is a priori ensured – if
we leave aside a painful fact that we need to cope with some technical
difficulties when looking for a proof). However a hope that the heuristic
arguments which we gathered at the start of the research guarantee a
“reasonability” of the resulting procedures, especially for finite samples
of data, is dim.

So it seems that very near to some “pragmatic truth” is a statement:
We cannot blindly rely on the heuristics (which are somewhere in the
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background of the methods) and apply routinely methods or characte-
ristics steming from them (as e. g. minimal biased estimators, see [15]
and [16], or the coefficient of determination). Besides the other reasons
for it is the fact that the good behaviour of such methods (or reliability
of the information contained in characteristics) is frequently connected
with sufficiency and efficiency of some statistics. However, both these
propeties are intimately associated with distributions (e. g. normal one)
which we cannot empirically distinguish (at least for small and modest
sample sizes) from those (e. g. student one) for which the corresponding
statistics are not always sufficient and are usually considerably deficient
(see [7] or [6]).

So quality or acceptability of an estimate of regression model
should be probably judged by more complex criteria, in fact
by the all available ones, especially by a “global look” on resi-
duals, e. g. by the normal plot. However, the normal plot, although
being much more sensitive to some “irregularities” among data than
coefficient of determination, brings information which cannot substitute
information offered by coefficient of determination and hence should be
used together with coefficient of determination. On the other hand, the
normal plot as a diagnostic tool has (at least) two disadvantages:

• Firstly, it is applicable only for normally distributed residuals.
• Secondly, it does not offer numerically clasifiable test.

The first shortage can be removed easily by utilizations of approprite
quantiles of some other distribution. To cope with the second one is
somewhat more difficult because there are some test of good fit e. g. for
normality of residuals but they are exteremely useless. E. g. anybody
who sometimes tried to prepare some simulated data knows that it is
not a rare case when data which passed through the test for normality,
passed through the same test after having been contaminated much
easier. In other words, the tests of good fit are nice topics to be read on
the lecture but for practicl use they are nearly completely useless. So
it seems better, however much more complicated, to apply some more
complex criteria, e. g. to compare estimates of density of residuals in
two disjoint parts of factor space, see [13].

Two short remarks at the end. We should admit that two objections
may appear. At first, one may say that the first example contained to
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small number of point. Secondly, someone else may propose to use the
diagnostic tool based on the formula for the change of the LS or M -
estimate when one point is excluded from data. The formula for LS
reads

(5) β̂LS,n − β̂LS,n−1,` =
[
(X`)TX`

]−1
X`(Y` −XT

` β̂
LS,n)

where β̂LS,n−1,` denotes LS estimate for data after deletion of the `-
th observation, X` denotes the `-th row of the design matrix X and
X(`) is the design matrix for the reduced data, see e. g. [3] or [20]. For
the M -estimators the formula is similar however it would require an
introduction of some additional notation, so we only refer to [18]. It is
true that using (5) and looking for the point, deletion of which causes
the largest change of ‖β̂LS,n − β̂LS,n−1,`‖ we would find successively
points 2 and 12, and finally the estimate of true model.

Both objections can be “annulled” by simulating more data of the
same type as above (i. e. also with the same level of contamination).
It is necessary to have such number of points (in our case about 72)
that we would have somewhat more than p+ 1 “contaminated” points.
Since the contaminated points (contaminated in the same way as the
points 2 and 12 above) are (very) modest leverage points LS estimate
will take into account just these points and the result is similar as above.
But in this case the formula (5) does not help. What would help? An
analoguous formula but for

max
Ik⊂{1,2,...,n}

‖β̂LS,n − β̂LS,Ik‖

where Ik = {i1, i2, ..., ik} with 1 ≤ i1 < i2 < ... < ik ≤ n (an asymptotic
representation even for M -estimators can be found in [19]). Unfortu-
nately just described data are not appropriate for presentation in the
paper (because of space necessary for them).

As a final conclusion let us say a “serious” word. All of readers pro-
bably felt that the text of the paper was somewhat but we hope that
not intolerably overstated. We hope that for those of us who are more
interested in applications it will lead to thinking the classical tools of
regression analysis once again. For those of us who are more attracted
by theoretical work it will inspire a feeling that in the flood of new,
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especially estimating methods it would be worthwhile to create also di-
versified, however relatively simply applicable diagnostic tools with the
good properties working already for finite sample sizes.
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Randomized response

Martin Anděl

Abstract The aim of the randomized response methods is
to decrease the percentage of untruthful respondent’s replies
in sample surveys. Two basic methods of randomized response
model and their applications in our republic as well as abroad
are mentioned in the paper.

1. Introduction

Surveys dealing with sensitive or highly personal matters disturb pri-
vacy of respondents. Results of this surveys are influenced by high num-
ber of refusing replies and also certain number of untruthful replies.
Respondents answering untruthfully are ashamed of the true answer or
they are aware of a persecution. This difficulties are not eliminated even
by assuring the respondents about anonymity of interviewing and using
data only for statistical interpretation. An approach, which guarantees
anonymity of respondents also against interviewer, is mentioned in the
following chapter. The approach deals with questions replying only yes
or no.

2. Warner’s model

Let a characteristicA dividing population of people into two mutually
exclusive groups be given. The group of people with attribute A we
denote A. The characteristic A may assign for example respondent distil
illegally alcohol at home or respondent with homosexual orientation. We
want to estimate ratio pA of people who belong to the group A. The
usual approach is following one. We randomly select n respondents from
the population and query them:

“Are you a member of the group A ?”

The total of positive replies is denoted nA. The estimate of ratio pA
is given by

(2.1) p̂A =
nA
n
.
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The variance of this estimate is

(2.2) var(p̂A) =
pA(1− pA)

n
.

Respondent is confronted with two statements in Warner’s randomi-
zed response model (see [1]):

1. I am a member of the group A.
2. I am not a member of the group A.

Respondent with the aid of a randomization trial, whose result is
unknown for the interviewer, choose the statement to which he answers.
Thus it is not possible for the interviewer to know whether respondent’s
“yes” or “no” confirms or, on the contrary, contests his pertinence to
group A. We introduce following notation:

pA = real proportion of people who belong to the group A,
P = probability that the first statement is randomly chosen,
n = size of sample,
m = total number of positive answers for both statements,
λ = probability of positive answer.

Probability λ is given by formula

(2.3) λ = PpA + (1− P )(1− pA).

Inserting the estimate λ̂ = m/n into (2.3) for λ we receive an estimate
for the proportion pA

(2.4) (p̂A)W =
1

2P − 1

(
P − 1 +

m

n

)
, P 6= 1

2
.

Variance of this estimate is

(2.5) var((p̂A)W ) =
pA(1− pA)

n
+

P (1− P )
n(2P − 1)2 .

The first therm in (2.5) is the common binomial variance connected
with direct question. The second therm in (2.5) is the price that we
pay for uncertainty connected with randomized reply. Variance in (2.5)
decreases with increasing distance of P from 0.5. But if we take P too
near to 0 or 1, then the respondent will be probably unwilling to reply
truthfully. It seems that the choice of parameter P between 0.1 and 0.3
or between 0.7 and 0.9, is a good compromise between minimization
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of variance of estimate and respondent’s willingness to give truthful
answer.

3. Do you distil alcohol at home ?

Warner’s randomized response model was successfully applied by Ing.
Josef Machek CSc. and Huver Fernández Rodríguez in 80th years in
Cuba (see [3]). The aim of the survey was to estimate the percentage
of households illegally distilling alcohol. Survey was done in the three
areas. A method for direct response was used also for comparison. The
results are displayed in the following table:

area direct response randomized response
estimate size of sample estimate

1 9% 384 60%
2 13% 380 30%
3 23% 576 40%

4. Two unrelated questions

This method is a modification of Warner’s approach. Following choice
of statements is introduced for respondent:

1. “I am a member of the group A.”
2. “I am a member of a group Y.”

The group Y is a group of people characterized by an undefective
social attribute. Here we shall assume that we know the probability pY
of event that respondent belongs to the group Y . For probability λ of
positive answer we have

(4.1) λ = PpA + (1− P )pY .

Inserting the estimate λ̂ = m/n in (4.1) for λ we get estimate for ratio
pA

(4.2) (p̂A)Y =
1
P

(m
n
− pY (1− P )

)
.

The variance of this estimate is

(4.3) var((p̂A)Y ) =
1

nP 2λ (1− λ) .
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It is convenient to choose the values of parameters as follows. Parameter
P should be near to one, for example between 0.7 a 0.9. Choice of
parameter pY depends on the value of the unknown probability pA. If
we expect that the probability pA is less than 0.5, we try to choose pY
near to 0. If we expect that the probability pA is larger than 0.5, we
try to put pY near to 1. In case that the probability pA = 0.5, we try
to choose pY near to 0 or near to 1. When choosing pY “near to 0” or
“near to 1” it is necessary to consider that variance in (4.3) decreases
with parameter pY tending to 0 or to 1, but when pY is very near to 0
or to 1 respondent’s willingness to answer truthfully is low.

5. The estimate of the ratio of homosexuals in the population of Czech
Republic

In the survey of company GfK Praha 889 respondents older than 18
years replied to the following couple of questions:

1. “Are you homosexually oriented?”
2. “Did you read newspaper MLADÁ FRONTA DNES yesterday

(if Monday, then on the day before yesterday)?”

Interviewers were equipped by six cards numbered 1, 2, 3, 4, 5, and
6. After shuffling the cards they let the respondent draw randomly one
card. If the drawn card had number 2, than respondent answered the
second question. In all other cases respondent answered the first one.
The frequencies of replies are displayed in the following table:

answer frequency
yes 45
no 730

no answer 114

Respondents who refused to answer are left out for further computing.
Values of parameters are following:

P =
5
6
, n = 775, m = 45.

From print media research we took the value

pY = 0.14
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(see [2]). Substituting in (4.2) we have estimate of the ratio of homose-
xuals in the population in Czech republic

(p̂A)Y
.= 0.042.

If we replace λ by λ̂ in (4.3)

λ̂ = P (p̂A)Y + (1− P )pY ,

we have estimate for variance

var((p̂A)Y ) .= 0.0001.

Published results of print media research are weighted by actual de-
mographic values given by the Czech Statistical Institute. The value
pY = 0.14 is unweighted. Weighted value pY is 0.16. The estimate (p̂A)Y
computed with this weighted value is 0.038.

Final value agrees to common meaning, that the proportion homose-
xual in population is about 4%.

Company DEMA that made a survey about sexual behavior of pe-
ople in Czech Republic for Prague’s Sexual Institute, published in the
newspaper Mladá fronta DNES of 9. 3. 1994 that the ratio of homose-
xually orientated men and women in our population is less than 2%.
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The mean is within one mean deviation of
any median

Václav Čermák

Let F denote the distribution function of a population, let µ and
σ2 denote its mean and variance, asumed finite, and let m denote any
median of F . Suppose without loss of generality that m < µ; the general
case follows from this one by reversing signs in the population.

The American Statistician recently published some proofs of the
inequality

(1) |µ−m| ≤ σ,
i.e. that the mean is within one standard deviation of any median (cf.
the article [1] which started a spate of letters to the Editor). My goal
here is to present a better (more strength) inequality by changing the
standard deviation with the mean deviation.

Begin the defining the two most familiar mean deviations of the dis-
tribution F . Let δ1 is the mean deviation about mean and let δ2 is the
mean deviation about median, i.e.

(2) δ1 =
∫
|x− µ|dF and δ2 =

∫
|x−m|dF.

Well-known are following two inequalities :

(a) δ1 ≤ σ, where equality holds only in case of causal or two-valued
symmetric distribution; otherwise, the inequality is strict.

(b) δ2 ≤ δ1, where equality holds only for symmetric distributions;
otherwise, the inequality is strict.

Less known is the inequality |ξ?| ≤ 1, where ξ? is the Bonferroni
(Pearson’s modified) measure of skewness

(3) ξ? =
µ−m
δ2

(cf. [2] and [3]). Here, ξ? = 1 holds only in case of maximal (extremally)
skewed distribution, i.e. for a set of n values x1 = x2 = · · · = xn−1 = a,
xn = b, a < b.
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The above then gives the following string of inequalities

(4) |µ−m| ≤ δ2 ≤ δ1 ≤ σ

as required.
Appendix (a direct proof). Without loss of generality, we can assume

that m = 0. Introducing inequality

(5) |
∫
xdF | ≤

∫
|x|dF

which holds for any distribution F that has a finite mean, we have

(6) |µ−m| = |µ| = |
∫
xdF | ≤

∫
|x|dF =

∫
|x−m|dF = δ2.
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