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”Dressing up” with correlation

Stanislav Komenda

Not only statisticians know that interrelations existing between the
events and variables offer an opportunity to consider the known state
of a variable as a source of information when the state of another va-
riable is to forecast. Moreover, the statisticians know how to bring this
opportunity to life – i. e. to give a rule, a formula, an algorithm of com-
putation to serve as an information channel. The essential part of the
respective methods is to search in the statistical textbooks within the
chapter headed ”Regression analysis”.

Statistical methods take into account that the statement one empi-
rical variable makes on the other one can never be perfect, in any real
situation, leaving some space for ambiguity or uncertainty. Information
transmission always has the character of a noisy channel.

The information flow and the transmission are not the only use of
interrelations existing between the variables. Applications are count-
less – some among them with extremely important consequences. As an
example anthropometrical standardization in frame of preparatory pha-
ses in the mass production where the products have to consider body
dimensions of the respective consumer – is to introduce. The garment
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(ready-made clothes) industry and the shoe producing industry as well
are situations of this kind.

Individual made-to-order production of a cloth by a tailor or of a shoe
by a shoemaker also took doubtless into consideration the interrelations
existing between body dimensions – as recognized within the hundreds
of years old experience. But, it is important that both the tailor and
the shoemaker as well had the opportunity to measure the respective
body dimensions of a consumer and moreover to control the fit again
in a certain phase of the product manufacture and to make corrections
and changes needed.

On the contrary, starting position of the mass ready-made production,
as represented by the within-the-wars enterprises of Rolný and Nehera
in the town of Prostějov or Baťa in Zlín, was different. Ready-made pro-
ducts are oriented towards an anonymous client. Nothing is known in
advance on the customer who is to put on just this cloth or shoes in the
future. That is the reason why in the preparation of manufacturing the
reasoning must be included concerning the ”sizes” to be produced so
that the producer would ”hit” just the space of the size figures actually
existing in the population of potential future clients. And that is just
this part of our play when correlation is entering on the scene – the task
of a sufficient fit for the anonymous customers being unsolvable without
it.

To manufacture a product of this kind we consider, 10 – 20 (in
case of clothes, coats, trousers, skirts and overalls) or 5 – 7 (in case
of shoes) body dimensions are taken into account. By the experience,
an acceptable fit of a product is attainable only within certain tolerance
interval specific for each dimension. These tolerances equal about 6 cm
for body height, 4 – 6 cm for chest circumference or waist circumference
and so on. If the Nature (genetics, anatomy, physical anthropology)
composed our bodies using the principle of free combinations of these
tolerance intervals in the multidimensional space, thousands of type fi-
gures would results in the case of five dimensions only. If it were the
case, no mass ready-made manufacture would be possible.

The possibility of the ready-made manufacturing is due to existing
correlation. To be more precise – due to the non-zero correlation. I met
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Mr. Thomas Baťa twice – at the occasion of awarding him the Pro merito
medal at Palacký University (1990) and one year later at the occasion of
his Honorary Doctor Degree awarded by the Prague School of Economy
– but I missed the chance to persuade him that the Baťa family should
include the symbol of correlation coefficient into its heraldic shield.

It is just due to existing (and high enough) correlation among the
body dimensions that the set of type figures able to cover – under the
given tolerances of the body dimensions considered – the clients’ po-
pulation contains significantly lower amount of elements. The majority
of combinations do not occur in the actual populations of clients at
all or occur only with the frequency negligibly low. The computations
considering fit tolerances of body dimensions and their variation within
the respective populations show that the mass ready–made manufacture
would suffice with a few tens of the size types, the number of them in
case of shoes being substantially lower. Obviously, all computations of
this kind have to consider age and sex of the potential clients, too.

As demonstrated by numerous anthropometrical studies analyzing
human body length dimensions (length of the upper and lower extre-
mities and their segments, trunk length etc) correlate highly positively
with the stature (body height) while the width, depth and circumference
dimensions have a high positive correlation with the chest circumference
and waist circumference, respectively. As the regression equations where
stature and chest circumference play the role of regressors (independent
variables) and the other body dimensions necessary to take into account
in the garment manufacture play the role of regressands (dependent va-
riables) prove, the type figures are sufficient to define as the suitable
combinations of the values chosen within the scales of these two basic
dimensions. The reason is that residual variances of these non-basic di-
mensions important from the viewpoint of garment manufacturing (like
the arm length, thigh and calf circumference, for example) become low
enough so that the 2- or 4-residual sigma interval does not cross over
the tolerance interval guaranteeing good fit. The same remains valid for
the shoe production, too – with the difference that the number of body
dimensions important in the manufacture under consideration is lower
– in comparison with that needed in garment manufacturing.
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Let me introduce a remark. When discussing on residual variance
we consider its value in a point within the multidimensional space of
regressors (multidimensional probability distribution taken as a model).
But the problem introduced needs to consider residual variance (of a
respective non-basic body dimension) not in a point but in an interval
of the regressors’ values. This last variance is to expect somewhat higher
– with the possibility to compute or at least to estimate by how much
higher.

Several years ago I met with an unusual system of garment manu-
facturing.

There was a tailor in Warsaw, Poland, Mr. A. Elert (tailoring for ”bet-
ter” people – they told me) who published a paper in the Polish garment
industry journal explaining there that each dimension of human body
can be expressed as a certain multiple of the radius of the hypothetic
sphere with the same mass and density as that of human body (this ave-
rage density being approximately 1.1 g.cm−1). His system of garment
manufacturing was derived from this fundamental concept – only the
values of stature and body mass (weight) of a person were necessary to
be known for this manufacturing.

I was asked to comment on the paper. After some period of hesi-
tation when this project seemed to be very odd to me – I conceived that
the information richness of the body weight as a regressor is to verify.
And, surprisingly, body weight proved a high reliability in its ability
to forecast depth, width and circumference body dimensions! Residual
variances of the circumferences (of the neck, thigh, calf etc) decreased,
within the subjects with the same category of body weight, to a small
fraction of the original, unconditioned variances. Length dimensions pro-
ved to be predicted from the weight with a very low efficiency, on the
other side. But, the prediction supported by both stature and body wei-
ght reached the efficiency comparable with that of the three regressors
– stature, chest circumference and waist (hip) circumference. Thus the
conclusion was – manufacturing garment by means of the known value
of body weight seems to be, from the informational viewpoint, quite
reasonable.
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As far as the Elert’s canons concerns (according to which each di-
mension would be a constant multiple of the radius of the sphere de-
rived from the body weight), this concept is to be considered idealized
and naive, due to its non-statistical character. The reason is that an-
thropometrical data prove easily existing variability (higher or lower,
but always a non-zero one) in case of any body dimension, in a sub-
population of subjects with the identical body weight (specified by the
respective age and sex category). As said in advance, circumferences
vary in such a subpopulation relatively only little, while length dimensi-
ons vary relatively more. The concept of these canons is applicable only
within the ”central” part of the space of body dimensions – with certain
approximation.

By the way, there are some constants definable on human body. E. g.
the index computed as the fraction with the caput femoris circumference
in the numerator and the diameter of caput femoris in the denominator
defines the irrational number π – due to the very spheric shape od caput
femoris.

To support my considerations in a little more quantitative way, some
body dimensions interesting from the viewpoint of garment manufactu-
ring are introduced (the symbol W being used for them as regressands),
together with their correlations with the regressors M (body weight)
and X (stature).

Besides it, residual variances of these regressands are given, in case
of various regressors’ systems: (M), (X,M), (X,Y, Z), where Y is chest
circumference and Z is the waist circumference (for men) or hip cir-
cumference (for women). We limit ourselves in the computation for the
adult population – the solution having some specific features in case of
children and youth.

Obviously, correlation of non-basic body dimensions with the stature
X and body weight M has a complementary character – each dimension
being ”loaded” by the information almost exclusively either from M or
from X , a balanced loading occurring only exceptionally. That is the
reason why information efficiency of both systems (X,M) and (X,Y, Z)
seems to be comparable, for almost all body dimensions W under con-
sideration.
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MEN

Body dimension W rWM rWX sWW sW.M sW.XM sW.XY Z

Neck circumference 0.70 0.20 4.76 2.41 2.31 2.09
Thigh circumference 0.79 0.29 11.65 6.72 6.59 7.56
Lower arm circumference 0.78 0.13 7.91 3.08 2.56 2.23
Waist height 0.38 0.91 26.87 23.05 4.75 3.50
Knee height 0.36 0.76 7.50 6.54 3.13 2.87
Height of the 7th
neck vertebra 0.50 0.97 36.04 27.21 2.21 0.34
Gluteal furrow height 0.33 0.84 18.09 16.06 5.30 4.69
Sitting height 0.38 0.80 21.26 18.26 7.50 6.76
Frontal shoulder width 0.51 0.38 4.93 3.67 3.53 2.94
Frontal hip width 0.68 0.45 4.64 2.51 2.39 1.80
Profile chest width 0.77 0.18 4.69 1.91 1.72 1.19

WOMEN

Body dimension W rWM rWX sWW sW.M sW.XM sW.XY Z

Neck circumference 0.70 0.11 5.45 2.81 2.78 2.81
Thigh circumference 0.82 0.15 29.10 9.60 9.50 7.79
Lower arm circumference 0.86 -0.13 11.57 2.99 2.26 2.43
Waist height 0.34 0.88 22.52 19.89 4.72 4.65
Knee height 0.21 0.71 7.73 7.39 3.82 3.81
Height of the 7th
neck vertebra 0.31 0.97 31.98 28.82 1.99 1.98
Gluteal furrow height 0.15 0.86 16.93 16.55 4.29 4.21
Sitting height 0.25 0.76 21.55 20.19 9.03 8.85
Frontal shoulder width 0.52 0.41 2.92 2.12 1.88 1.87
Frontal hip width 0.80 0.22 7.75 2.75 2.75 1.71
Profile chest width 0.82 0.04 8.70 2.75 2.54 1.66

Table. Correlation coefficients, variances and residual variances of the an-
thropometrical systems to compare. All variances are in cm2.
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How Sports Game Outcomes Depend
on Intermediate Game Scores

Jiří Anděl

If you find the name Frederic Mosteller among authors of a paper
you can be sure that it is something interesting for reading. This is
confirmed by the paper Predicting professional sports game outcomes
from intermediate game scores, written by H. Cooper, K. M. DeNeve,
F. Mosteller, and published in the journal Chance, Vol. 5, 1992, No. 3 –
4, pp. 18 – 22.

It is our own experience that fans leave stadium in many cases already
before the end of the game if they believe that the result will not change.
(Some people claim that many fans in the last time do not come to
stadium at all.) On the other hand it is not so much known in Europe
that many people in the U.S.A. come to see basketball just before the
end of the game, because one says that the last quarter of an hour of
the game (or even the last two minutes) is the most dramatical and the
score is changing. Is it true? Statistics can help to answer this question.

There are data about 200 basketball matches, 100 baseball matches,
100 ice–hockey matches and 100 football matches. From the practical
point of view it is random sample from games played in 1991/1992.
Define ”at the beginning” and ”before the end” in the following way:

game at the beginning before the end
basketball after 1/4 of the game after 3/4 of the game
baseball after 3 runs after 7 runs
ice-hockey after 1st period after 2nd period
football after 1/4 of the game after 3/4 of the game

In the basketball, ice-hockey and football the team who was loosing
before the end succeeded to win the game in about 20cases. In baseball
it was only in 6 % cases.

The dependence between the beginning and the final result is more
complicated. The team which was loosing at the beginning succeeded to
win in 30 % in basketball, in 19 % in baseball, in 31 % in ice-hockey and
even in 45 % in football.
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It is mainly the home team who is able to change the unfavorable
score before the end of the game, at least in basketball. The home team
did it in 33 % cases, the visiting team only in 10big. There is a small
difference in ice–hockey but in football the chances to change the unfa-
vorable score are the same for the home team as for the visiting team.
There is no information about baseball because the number of games
where the team loosing before the end finally won, was too small.

Which model is the right one
or

Handpick Your coefficient of determination
Karel Zvára

1. Introduction

Let we have the common normal linear model y ∼ N(µ, σ2I) where
parameterµ is estimated by least squares method as ŷ = X(X ′X)−X ′y.
The residual sum of squares is equal to the square of vector y− ŷ length,
which is equal to RSS = ‖y− ŷ‖2 =

∑n
i=1(yi− ŷi)2. Describing the ori-

ginal variability of the dependent variable by ‖y−ȳ1‖2 =
∑n
i=1(yi−ȳ)2,

residual sum of squares expresses the part of this variability of depen-
dent variable, which cannot be explained by the supposed dependency.
The coefficient determination R2 is the fraction of the sum of squares
of deviations of dependent variable from its mean that is attributable
to the regression:

R2 = 1− ‖y − ŷ‖
2

‖y − ȳ1‖2 = 1−
∑n
i=1(yi − ŷi)2

∑n
i=1(yi − ȳ)2

Unlike the residual sum of squares, the coefficient determination is a
dimensionless variable. We remind that our interpretation of coefficient
of determination is reasonable only for regression models with intercept.
We will suppose in our paper that this assumption is fulfilled.

Let we remind the some modifications of the model, which does not
influence the mentioned characteristics. The residual sum of squares
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depends only on the distance of the vectors y a ŷ. It stay the same
after the adding of some fixed vector to both vectors or when instead
of matrix X we use the matrix X∗ = XD, where D is a nonsingular
matrix. If follows from the fact that the vector ŷ is a projection of the
vector y on a linear space of the columns of matrixX, which is the same
as the linear space of columns of the matrix X∗. Especially, the residual
sum of squares does not depend on scale of regressors, which values are
in the columns of the matrix X. The adjustment of the scale of the
dependent variable influences the residual sum of squares, but in the
fraction of coefficient of determination the square of the transformation
constant is shortened, therefore this operation does not influence value
of this coefficient.

2. Examples

In their paper Radek and Partyková (1984) deal with dependency of
the yield of potatoes on the mean month temperature and mean month
rainfalls. We do not wont do comment their work, we only will use their
data. When we tried to explain the variability of yields by the rainfalls on
all of 12 months preceding the gathering, we found that only two months
rainfalls (September’s and October’s) collects nearly all information.

From our point of view it is interesting that predictions of yields by

v̂ = 21,0102 + 0,0595s9 − 0,0585s10

or
v̂ = 21,0102− 0,0585(s10 − s9) + 0,0010s9

give the same residual sums of squares RSS = 4.3536 and the same
coefficient of determination R2 = 57.8%. It is a good illustration of
independence these two statistics to a choice of the base of the linear
space. It is not too interesting for us, that last the regression coefficient’s
standard error is equal to 0.0358 so that this regression coefficient is
statistically not significant.

Let us try to predict the October’s rainfalls from known September’s
ones. The Least squares method gives the estimate

ŝ10 = 59,0833− 0,3915s9

with the slope’s standard error 0.2057, with the residual sum of squares
RSS = 529,52 and with coefficient of determination R2 = 17,6%. We
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can explain so small part of variability that we cannot reject on 5%
level the hypothesis that the slope is equal to zero. Let us try to explain
by means of September’s rainfalls value of s10 − s9 (we saw that the
prediction of yield was a function of this difference). Instead of relation
s10 = α+ βs9 we go into the relation s10 − s9 = α+ (β − 1)s9. Geome-
trically, in the relation y = 1α + xβ + e we subtracted fixed vector of
October’s temperatures from both sides of the relation. Therefore both
of vectors y, ŷ are changed by this constant vector so that the residual
sum of squares was no changed. The same is true for the residual vari-
ance. The length of the regression vector x was not changed, therefore
the standard error of the slope is the same, too. Indeed, the cited data
gave

̂y10 − y9 = 59.0833− 1.3915s9

with the standard error 0.2057, the residual sum of squares RSS =
529.52, but with the coefficient of determination R2 = 72.9%. The slope
is significantly non-null for every meaningful level. The coefficient of de-
termination was dramatically changed. It is true in any circumstances?

Let we try to deal with another data. A group of boys was watched
for a few years. We know their stature in ten and in twenty year. The
prediction of twelve year stature is given by

v̂12 = 43.0441 + 0.7684v10

with slope’s standard error 0.2729, the residual sum of squares RSS =
143.2542 and with the coefficient of determination R2 = 53.1%. Sear-
ching for the prediction of the increment of stature for two years we
get

̂v12 − v10 = 43.0441− 0.2316v10

with the standard slope’s error 0.2729, with the residual sum of squares
RSS = 143.2542, but with the coefficient of determination R2 = 9.3%.

Let us try to explain the suggested problem.
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3. The coefficient of multiple correlation

We know, that the coefficient of determination is the square of co-
efficient multiple correlation. For simplicity, let we have only the sim-
ple linear regression. Then, the coefficient of determination is equal to
square of the sample correlation coefficient r2

yx. Using the estimates of
the variance and the covariance we can write for fixed c

r2
y−cx,x = cov2(y−cx,x)

var(y−cx) var(x) = [cov(x,y)−cvar(x)]2

[var(y)−2ccov(x,y)+c2 var(x)] var(x)

= cov2(x,y)
var(x) var(y)

var(y) [cov(x,y)−cvar(x)]2

cov2(x,y) [var(y)−2ccov(x,y)+c2 var(x)]

= r2
yx

var(y) [cov(x,y)−cvar(x)]2

cov2(x,y) [var(y)−2ccov(x,y)+c2 var(x)] .

It follows that in the model for y − cx coefficient of determination
r2
y−cx,x is greater than the coefficient of determination r2

yx in the model
for y, if and only if the fraction in the last equation is greater than 1.
It is true if and only if

var(y) [cov(x, y)− c var(x)]2 >

cov2(x, y) [var(y)− 2c cov(x, y) + c2 var(x)]

− 2c var(x) cov(x, y) var(y) + c2var2(x) var(y) >

− 2c cov3(x, y) + c2 var(x) cov2(x, y)

var(x) var(y)[−2c cov(x, y) + c2 var(x)] >

cov2(x, y)[−2c cov(x, y) + c2 var(x)].

Because of var(x) var(y) ≥ cov2(x, y), it is true that

c [2 cov(x, y)− c var(x)] < 0.

The estimate of the slope is equal to by|x = cov(x, y)/var(x), therefore
the last inequality can be rewritten as c[by|x − c/2] < 0. Especially, for
c = 1 in our examples we get the inequality r2

y−x,x > r2
yx if and only if

by|x < 0, 5.
The lapidary exhibition of the difference of two values of the co-

efficient of determination may be the next one. For the simple linear
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regression the coefficient of determination is the square of the corre-
lation coefficient. The last coefficient is significantly non-null if and only
if the same is true for the slope of simple regression. The hypothesis
that the slope in the model for y − cx is equal to zero is equivalent to
the hypothesis that the slope is equal to the constant c in the model
for y. Because of the standard error of slope is the same in the both
of models, the value of test statistics (correlation coefficient, coefficient
of determination) depends on the relation among the estimate by|x of
slope and the value c. The coefficient of determination in the model for
y have to be greater than the same coefficient in the model for y − cx,
if and only if the estimate by|x is nearer to 0 than to c.

Reference

[1] . K. Shah (1991) Relationship between the coefficients of determination of alge-
braically related models. The American Statistician 45, 300–301.

[2] . Radek, E. Partyková (1984) The dependency of the potatoes yield on the weather
(in Czech). Rostlinná výroba 30, 729–738.

Author’s address: KPMS MFF UK, Sokolovská 83, 186 00 Praha 8-
Karlín.

Additional concepts of the coefficient of
determination

Josef Kozák

1. Introduction

RNDr. K. Zvára, CSc., showed in the two issues of the Information
Bulletin of the Czech Statistical Society (No. 1 in February and No.
2 in May 1993) that the well known measure of the ”quality” of the
regression model – the coefficient of determination - represents a solution
to interesting methodical considerations. The goal of these remarks is
the continuation of these kind of considerations.
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2. Basic results

Let us consider the linear model

(1) Y = Xβ + ε, E(ε) = 0n, E(εε′) = σ2In,

where Y denotes the n-element vector of the known observations of
the explained variable, X means the non-stochastic n ×K , matrix of
explanatory variable , 1 ≤ K < n, with full rank, β denotes the unk-
nown K-element vector of parameters and ε means the n-dimensional
normally distributed random vector with the above mentioned proper-
ties where σ2 > 0 denotes an unknown scalar. Let us assume that the
elements of the vector Y as well as of the columns of the matrix X
have zero averages, i.e. using the notation 1n for the n-element vector
of unities, the relations

(2) Y′1n = 0 a X′1n = 0K .

hold. Regarding the vector β and the scalar σ2, only the usual least-
squares estimators will be considered

b(Y,X) = (X′X)−1X′Y ,(3)

s2 = (Y −Y(X))′(Y −Y(X))/(n −K) ,(4)

where

(5) Y(X) = Xb(Y,X)

denotes the estimate of the vector of the deterministic component (Xβ).
Introducing the notation

(6) U(X) = Y −Y(X)

for the estimator of the vector ε of random disturbances (the so called
vector of residuals), it is not difficult to prove identities

Y = Y(X) + U(X) ,(7)

Y′Y = (Y(X))′Y(X) + (U(X))′U (X) .(8)

The last relation represents the solution to the construction of the co-
efficient of determination

(9) D(X) =
(Y(X))′Y(X)

Y′Y
= 1− (U(X))′U(X)

Y′Y
;
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because n−1Y′Y , resp. n−1(Y(X))′Y(X) can be interpreted as the
variance of the empirical values, resp. the variance of the estimates of
the theoretical values, the above mentioned measure indicates the ratio
of the variance of the empirical values, which can be explained by the
variance of the estimates of the theoretical values.

3. Change of space

As given for instance in [2], p.386, the initial identity (7) can be
substituted with the given non-zero K-element vector c by the identity

(10) Y −Xc = (Y(X) −Xc) + U(X) ,

i.e. on the both sides of the identity (7) the vector (Xc) can be sub-
stracted, especially due to the fact that instead of the analysis of the
vector Y , the analysis of the ”shifted” vector (Y − Xc) seems to be
more rational (at least from the point of view of material interpretation
). Simple examples of this kind of transformations for K = 1 are given
in [2] and i [1] ; unfortunately, a more general explanation of this idea
is not easy in spite of the expectation.

Respecting (7) and (3) the relation (10) can be used for the derivation
of the identity

(11) (Y−Xc)′(Y−Xc) = (Y(X)−Xc)′(Y(X)−Xc)+(U(X))′U(X)

”competing” the identity (8) and offering another variant of the coeffi-
cient of determination

(12) D(X; c) =

=
(Y(X) −Xc)′(Y(X) −Xc)

(Y −Xc)′(Y −Xc)
= 1− (U(X))′U(X)

(Y −Xc)′(Y −Xc)
,

which can be distinguished from the measure (9) by the name ”shifted
coefficient of determination” (with a certain degree of hesitation); this
measure gives the ratio, which explains the variance of the estimates of
the ”shifted” theoretical values n−1(Y(X)−Xc)′(Y(X)−Xc) as com-
pared with the variance of ”shifted” empirical values n−1(Y−Xc))′(Y−
Xc)) .
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As stated above, there does not exist any reason from the material
point of view for the comparison of both defined coefficients. Neverthe-
less, if we are interested in such comparison, it is not difficult to get the
result

(13) D(X; c)−D(X) =

=
(U(X))′U(X)

(Y′Y)(Y −Xc))′(Y −Xc))
c′X′X(c− 2b(Y,X)) ,

by utilizing (8) and (3), which can be commented as follows: the mutual
relation of both coefficients depends on the relation of the vectors c and
b(Y,X) . The relation (13) represents a generalization of the conside-
ration for K = 1 from [1] .

4. Model with K > 1

In practical applications a regression model with two kinds of expla-
natory variables is, as a rule, employed, i.e. the (1) one with

(14) X = [T|F] ,

J + H = K, 2 ≤ K < n, where T, F denote the full rank matrices
n×J, n×H , respectively, 1 ≤ J < n, 1 ≤ H < n. Let us mention some
consequences of this case.

(a) First, it seems to be useful to remember some results from [3],
p.3–12: let us introduce a square matrix of order n

(15) M = In −T(T′T)−1T′ ,

with properties

(16) M = M′ = M2 , MT = 0n×J ,

and let us define a n×H matrix

(17) FT = MF = F−Tb(F,T) , b(F,T) = (T′T)−1T′F

containing the deviations of values of variables of the second group from
their estimates gained under the utilization the variables of the first
kind; finally, introducing vectors

(18) b(Y,T) = (T′T)− 1′TY , b(Y,FT ) = (F′TFT )−1F′TY ;
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it is not difficult to prove that the vector of the estimates of the theore-
tical values Y(X) introduced in (5) can be under the notations

(19) Y(T) = Tb(Y,T) , Y(FT ) = FTb(Y,FT ) .

expressed as

(20) Y(X) = Y(T) + Y(FT ) ,

thus, the following can be observed: working with the model with two
kinds of explanatory variables in the above mentioned sense, the vector
Y(X) can be understood as the sum of two mutually independent vec-
tors, namely the vector Y(T) containing the estimates of the theoretical
values depending only on the first kind of explanatory variables, and the
vector Y(FT ) containing the estimates of theoretical values derived only
on the basis of the second kind of explanatory variables, the influence
of the first kind of explanatory variables being excluded.

(b) Respecting (20), the identity (7) can be rewritten as Y = Y(T)+
Y(FT ) + U(X) . Further, in the analogy to (6) U(T) = Y − Y(T)
denotes the vector of residuals associated with the model with the first
kind of explanatory variables . As a consequence, there is the identity

(21) U(T) = Y(FT ) + U(X) ,

which - due to the fact that (Y(FT ))′U(X) = 0 – further leads to the
identity

(22) (U(T))′U(T) = (Y(FT ))′Y(FT ) + (U(X))′U(X)

representing a further ”competitor” of the initial identity (8). This one
offers to construct a further version of the coefficient of determination

(23) D(FT ) =
(Y(FT ))′Y(FT )

(U(T))′U(T)
= 1− (U(X))′U(X)

(U(T))′U(T)
,

which declares, how much of the variance of the theoretical values based
on the second kind of variables by exclusion the influence of the first
kind of variables ”explains” the amount of the variance of the residual
values including only the first kind of variables ; this version will be
called the ”partial coefficient of determination” (again with a certain
amount of hesitation).
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In this connection the natural question arises, whether there exists
any connection between the ”general” coefficient of determination D(X)
and ”individual” coefficients D(T) and D(FT ), where in analogy to (9)

(24) D(T) =
(Y(T))′Y(T)

Y′Y
= 1− (U(T))′U(T)

Y′Y
denotes the coefficient of determination corresponding with the model
using only the first kind of explanatory variables. Because of the fact
that under given circumstance the identity

Y′Y = (Y(T))′Y(T) + (Y(FT ))′Y(FT ) + (U(X))′U(X) ,

holds, by utilization of the definitions (9), (23) and (24) it is not difficult
to prove the identity

(25) D(X) = 1− (1−D(T))(1 −D(FT ))

which generalizes the known relation between the partial correlation
coefficients and the multivariate one in the case with K > 1. Finally, by
elementary arrangement of the (25) we get the following result

(26) 1−D(X) = (1−D(T))(1 −D(FT )) ,

which characterizes the degree, to which the ratio of the unexplained
variability of the model gets smaller.

The situation (14) takes place for instance by analyses of the time-
series of economic indicators where T denotes the matrix of functions of
the time-variable, whose inclusion into the model is, as a rule, without
any kind of doubt, and F is a matrix of the so called factor variables
(symptomatic or causal variables), which are included in the model, as a
rule, always with a given degree of uncertainty. It is not clear yet in this
connection, in what kind of ”philosophy” is useful to treat to the problem
of including the factor variables into the model; in this connection the
relations (25) and (26) suffer some inspiration (in my opinion at least).
Utilizing the time-series for prediction purposes, we should try to find a
”good” model leading to the relative ”high” coefficient of determination
D(X); as it was mentioned above, the matrix T is practically well known
and with its connected coefficient D(T) practically equals unity, and,
therefore, we do not to bother ourselves with the selection of any kind
of matrix F of factor variables. On the contrary, in the case of the
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econometric models, where we try to find a ”good” model of behaviour
of the explained variable on the basis of the factor explanatory variables,
it seems to be necessary to get rid at the influence of variables from
any matrix T , i.e. in this kind of analysis we have to orient ourselves
on the matrix F, which maximizes the resulting partial coefficient of
determination D(FT ) and to omit the coefficients D(T ) and D(X) .
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The main Activities of Czech Statistical
Society in 1993

• 27th January 1993,the third general meeting was held at Uni-
versity of Economics, Prague. The programme was divided into
three parts: lectures, discussion and the election. The new Soci-
ety committee was elected with the following members:

prof. Ing. Václav Čermák, DrSc., president
RNDr. Jaromír Antoch, CSc., viceprezident
Prof. Ing. Jaroslav Jílek, CSc., viceprezident
RNDr. Gejza Dohnal, CSc., scientific secretary
Ing. Hana Řezanková, CSc., treasurer
Prof. RNDr. Jiří Anděl, DrSc. Ing. Josef Machek, CSc.
Doc. Ing. Richard Hindls, CSc., Ing. Zdeněk Roth, CSc.
RNDr. Felix Koschin, CSc. Doc. Ing. Eduard Souček, CSc.
Prof. Ing. Jiří Likeš, DrSc. RNDr. Karel Zvára, CSc.

• The Society committee advertised the regular scholarship which
enables young statisticians (students) to participate in statisti-
cal conferences or seminars in Czech Republic. To request this
scholarship, the candidate must fulfil the following conditions:

– to be a member of Czech Statistical Society,
– to be younger than 35,
– to submit a contribution on desired conference or seminar.

The commission appointed by Society committee will passed
judgement on all obtained requirements.
• 17th September 1993, the seminar ”Today statistics” was held

at University of Economics Prague. The lectures was prepared
by the Department of probability and mathematical statistics
of Charles University, faculty of mathematics and physics and
by the Department of statistics and probability of University of
Economics, Prague.

The seminar was introduced by the president of Czech Statis-
tical Society, prof. Čermák. Lectures covered 4 areas: teaching
(Prof. Jílek, Doc. Hebák), medical statistics (Mrs. Mazánková),
theoretical statistics (Dr. Zvára) and networks services (Dr. An-
toch).
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• 3th December, 1993, the state meeting in honour of centenary
of Prof. Janko’s birth was held at the University of Economics,
Prague. Prof. Janko was the eminent expert in the field of in-
surance mathematics and he was one of the founders of the
modern mathematical–statistical methods in our country. The
meeting was organized by the University of Economics, Charles
University and Czech Statistical Society.
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