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Abstract

We propose a class of nonparametric estimators for regression
models based on least squares over sufficiently smooth sets of
functions. These estimators permit the imposition of additional
monotonicity and concavity constraints.

Estimation takes place over balls of functions which are ele-
ments of suitable Sobolev space. The Sobolev spaces are special
types of Hilbert spaces that facilitate calculation of least square
projection. The Hilbertness is allowing us to take projections
and hence to decompose spaces into mutually orthogonal com-
plements. We assemble and prove necessary preliminaries and
theorems for statistical regression in these spaces. Then we
transform the problem of searching for the best fitting function
in an infinite dimensional space into a finite dimensional opti-
mization problem.

In regression in Sobolev spaces, we have demanded only
smoothness constraint on regression function f ∈ F ={
f ∈ Hm(Qq) : ‖f‖2

Sob,m ≤ L
}

. Now, our estimators should

satisfy additional constraints. We therefore focus on the im-
position of additional constraint —isotonia— on nonparametric
regression estimation and testing of this constraint. Two basic
types of isotonia (non-negativity or non-positivity of n-th deriva-
tive of regression curve) are monotonicity and concavity so we
will concentrate mostly on them. We would like to estimate

subject to f ∈ F̃ ⊆ F where F̃ combines smoothness with

further functional properties and to test H0 : f0 ∈ F̃ .

We prove that balls of functions in Sobolev space are bounded

and have bounded higher order derivatives. It permits us to

estimate over rich set of functions with sufficiently low metric

entropy and apply laws of large numbers and central limit theo-

rems results. We also describe bootstrap techniques for isotonic

regression in Sobolev spaces.

1 Sobolev Representors

A connected Lebesgue-measurable (open or closed) subset Ω
of Euclidean space Rq with non-empty interior is called a do-
main. Consider a real-valued function on a given domain that
is Lebesgue-measurable. Simply f : Ω → R, Ω ∈ Mq(λq). We

define the Lebesgue spaces by Lp(Ω) :=
{
f : ‖f‖Lp(Ω) < ∞

}
,

1 ≤ p ≤ ∞, where ‖·‖Lp(Ω) denotes p-th Lebesgue norm.

Corollary 1.1. Lp(Ω), 1 ≤ p ≤ ∞ is a Banach space. (See
[Luk03].)

We consider function f : Ω → R and denote by D~αf(x) :=
∂|~α|1f(x)

∂x
α1
1 ...∂x

αq
q

its partial derivatives of order |~α|1 for x ∈ int(Ω)(≡
Ω◦ := Ω\∂Ω), where ~α = (α1, . . . , αq)

T ∈ Nq
0 is a multiindex

of modulus |~α|1 =
∑q

i=1 αi. We define Cm(Ω) space of m-times
continuously differentiable scalar functions upon bounded do-
main Ω.

Definition 1.1 (Sobolev norm). Let f ∈ Cm(Ω) ∩
Lp(Ω). We introduce Sobolev norm ‖f‖p,Sob,m :=
{∑

|~α|∞≤m
∫

Ω

∣∣∣D~αf(x)
∣∣∣
p

dx}1/p

.

Definition 1.2 (Sobolev space). Sobolev space Wm
p (Ω) is in-

tersection of completion of space Cm(Ω) with respect to Sobolev
norm ‖·‖p,Sob,m and Lp(Ω).

Definition 1.3 (Sobolev inner product). Let f, g ∈ Wm
2 (Ω).

We introduce Sobolev inner product 〈·, ·〉Sob,m:

〈f, g〉Sob,m :=
∑

|~α|∞≤m

∫

Ω

D~αf(x)D~αg(x)dx. (1)

For simplicity we denote Sobolev norm ‖·‖2,Sob,m := ‖·‖Sob,m,
Sobolev space Hm(Ω) := Wm

2 (Ω) and Qq closed unit cube in
Rq.

Theorem 1.2 (Hilbert space).Hm(Ω) is a Hilbert space. (See
[Luk03].)

Theorem 1.3 (Representors in Sobolev space). For all
f ∈ Hm(Qq), a ∈ Qq and w ∈ Nq

0, |w|∞ ≤ m − 1,
there exists a function ψwa (x) ∈ Hm(Qq), s.t.〈

ψwa , f〉
Sob,m

= Dwf(a). (2)

ψwa is called a representor at point a with rank w.
Furthermore, ψwa (x) =

∏q
i=1ψ

wi
ai

(xi) for all x ∈ Qq,
where ψwiai (·) is the representor in the Sobolev space of
functions of one variable on Q1 with inner product
∂wif(a)

dxwii
=

〈
ψwiai , f(x1, . . . , xi−1, ·, xi+1, . . . , xq)

〉
Sob,m

=
m∑

α=0

∫

Q1

dαψwiai (xi)

dxαi

dαf(x)

dxαi
dxi. (3)

Theorem 1.4. The embedding Hm(Qq) →֒ Cm−1(Qq) is com-
pact. (See [BY97].)

Let’s define K := {0, 1, . . . , 2m + 1} \ {κ,m + 1 + κ}, where

κ :=

{
m
2
, 2 | m,

m+1
2 , 2 ∤ m

. From proof of Representors Theo-

rem 1.3 we easily obtain that representor ψa ∈ Hm [0, 1] s.t.
〈ψa, f〉Sob,m = f(a) for all f ∈ Hm [0, 1] will be of the form

ψa(x) =

{
La(x) 0 ≤ x ≤ a,
Ra(x) a ≤ x ≤ 1,

where

La(x) =
∑

k∈K
γkϕk(x) and Ra(x) =

∑

k∈K
γ2m+2+kϕk(x). (4)

We also determine ϕk(x) for m even

ϕk(x) = exp
{(
Re(λk)

)
x
}

cos
[(
Im(λk)

)
x
]
,

k ∈ {0} ∪M; (5a)

ϕm+1+k(x) = exp
{(
Re(λk)

)
x
}

sin
[(
Im(λk)

)
x
]
,

k ∈ {0} ∪M; (5b)

and for m odd
ϕ0(x) = exp {x} ; (6a)

ϕk(x) = exp
{(
Re(λk)

)
x
}

cos
[(
Im(λk)

)
x
]
, k ∈ M; (6b)

ϕm+1(x) = exp {−x} ; (6c)

ϕm+1+k(x) = exp
{(
Re(λk)

)
x
}

sin
[(
Im(λk)

)
x
]
, k ∈ M;

(6d)
where

λk = eiθk, θk ∈





(2k+1)π
2m+2

, 2 | m, k ∈ K,

kπ
m+1

, 2 ∤ m, k ∈ K.
(7)

and M := {1, 2, . . . , m} \ {κ}.
Theorem 1.5 (Obtaining coefficients γks). Coefficients γk of
representor ψa(x) are unique solution of 4m× 4m system of
linear equations∑

k∈K
γk

(
ϕ

(m−j)
k (0) + (−1)jϕ

(m+j)
k (0)

)
= 0,

j = 0, . . . , m− 1; (8a)∑

k∈K
γ2m+2+k

(
ϕ

(m−j)
k (1) + (−1)jϕ

(m+j)
k (1)

)
= 0,

j = 0, . . . , m− 1; (8b)∑

k∈K
(γk − γ2m+2+k)ϕ

(j)
k (a) = 0,

j = 0, . . . , 2m− 2; (8c)∑

k∈K
(γk − γ2m+2+k)ϕ

(2m−1)
k (a) = (−1)(m−1); (8d)

where K is defined above and ϕk in (5–6).

2 Least Squares

Definition 2.1 (Single Equation Model). The single
equation model is

Yi = f0(Xi) + εi, i = 1, . . . , n (9)

with these assumptions:

i) Xi are q-dimensional random vectors, i.i.d. with prob-
ability law Px and density px bounded away from zero
on the support Qq, the unit cube in Rq;

ii) εi are i.i.d. random variables with probability law Pε,0
so that E εi = 0 and Var εi = σ2

ε,0 for all i; Pε,0 ∈ Pε a
collection of probability laws with mean 0 and support
contained in a bounded interval of R1; Xi and εi are
independent;

iii) f0 ∈ F , where F is a family of functions in the
Sobolev space Hm(Qq) from Rn to R1, m > q

2,

F =
{
f ∈ Hm(Qq) : ‖f‖2

Sob,m ≤ L
}

.

Least squares are in regression the most typical and standard
way of error penalization. Our regression problem can be char-
acterized in one of these ways:

• minf∈Hm
1
n

∑n
i=1 [yi − f(xi)]

2 s.t. ‖f‖2
Sob,m ≤ L,

• minf∈Hm

{
1
n

∑n
i=1 [yi − f(xi)]

2 + χ ‖f‖2
Sob,m

}
.

The Sobolev norm bound L and also the smoothing parame-
ter (bandwidth parameter) χ controlls the tradeoff between the
infidelity to the data and roughness of the estimated solution.

Definition 2.2 (Representor Matrix). Let ψx1, . . . , ψxn be the
representors for function evalution at x1, . . . , xn respectively, i.e.
〈ψxi, f〉Sob,m = f(xi) for all f ∈ Hm, i = 1, . . . , n. Let Ψ be the

n×n representor matrix whose columns (and rows) equal the rep-
resentors evaluated at x1, . . . , xn; i.e. Ψi,j =

〈
ψxi, ψxj

〉
Sob,m

=

ψxi(xj) = ψxj(xi).

Theorem 2.1 (Infinite to Finite). Let y = (y1, . . . , yn)
′

and define

σ̂2 = min
f∈Hm

1

n

n∑

i=1

[yi − f(xi)]
2 s.t. ‖f‖2

Sob,m ≤ L,(10)

s2 = min
∈Rn

1

n
[y − Ψ
]′ [y − Ψ
] s.t. 
′Ψ
 ≤ L (11)

where 
 is a n×1 vector and Ψ is the representor ma-
trix. Then σ̂2 = s2. Furthermore, there exists a solu-
tion of optimizing problem of the form f̂ =

∑n
i=1 ĉiψxi,

where 
̂ = (ĉ1, . . . , ĉn)
′ solves σ̂2. The estimator f̂ is

unique a.s.

Lemma 2.2 (Symmetry of Representor Matrix). Representor
Matrix is symmetric.

Theorem 2.3 (Positive Definitness of Representor Matrix).
Representor Matrix is positive definite.

Theorem 2.4 (Asymptotic Behaviour of Finite Optimizing So-

lution). Let f̂ satisfy s2 = min1
n

∑n
i (yi − f(xi))

2 s.t. f ∈ F .
Suppose f0 ∈ F , then:

a) s2 a.s.−−→ σ2
ε,0, n→ ∞;

b) 1
n

∑n
i

(
f̂(xi) − f0(xi)

)2

= Op (n−η) where η = 2m
2m+q

and
n→ ∞;

c) n1/2
[
s2 − σ2

ε,0

] D−→ N
(
0,Var(ε2)

)
, n→ ∞.

Var(ε2) may be estimated consistently using fourth order mo-

ments of the estimated residuals ε̂i = yi − f̂ (xi).

Theorem 2.5 (Optimizing with Constraint). Optimizing
problem with constraint

min
∈Rn

1

n
[y − Ψ
]′ [y − Ψ
] s.t. 
′Ψ
 ≤ L (12)

where Ψ > 0 is a symmetric n × n matrix, y is an n × 1
vector of constants and L > 0; has a solution 
̂ = Φd̂, where
Φ is an orthogonal n × n matrix from Schur decomposition
Ψ = ΦΛΦ′, where

Λ = diag {λ1, . . . , λn} , (13)

λi > 0, i = 1, . . . , n, (14)

I = Φ′Φ = ΦΦ′ (15)

and d̂ = (d̂1, . . . , d̂n)
′ solves

mind∈Rn

1

n

n∑

i=1

(λidi − zi)
2 s.t.

n∑

i=1

λid
2
i ≤ L (16)

where z = (z1, . . . , zn)
′ = Φ′y. Vector d̂ always exists.

Multiple observations : (See [HY03].)

• e.g. option price data often consist of multiple observations
at a finite vector of strike prices

• let X = (X1, . . . , Xk)
′ be the vector of k distinct strike prices

• assume that the vector X is in increasing order

• let σ2(X1), . . . , σ
2(Xk) be the residual variances at each of

the distinct strike prices

Let ∆ be the n × k matrix such that ∆ij :=

{
1 if xi = Xj

0 otherwise
.

We may now rewrite our infinite optimizing problem as

min
f∈Hm

1

n
[y − ∆f(x)]′ Σ−1 [y − ∆f(x)] s.t. ‖f‖2

Sob,m ≤ L

(17)
Nothing that the representor matrix Ψ is in this case k× k, the
analogue to finite quadratic optimizing becomes:

min
∈Rk

1

n
[y − ∆Ψ
]′ Σ−1 [y − ∆Ψ
] s.t. 
′Ψ
 ≤ L (18)

Theorem 2.6 (Extentions to the Multi-Equation Settings
Part). Let Ξ be a positive definite matrix and define

σ̂2 = min
f∈Hm

1

n

n∑

i=1

[yi − f(xi)]′ Ξ [yi − f(xi)]
s.t. ‖fj‖2

Sob,m ≤ Lj, j = 1, . . . , p (19a)

s2 = minC∈Rn×p

1

n

n∑

i=1


yi − C′



Ψi1
...

Ψin






′

Ξ


yi −C′



Ψi1
...

Ψin







s.t. (C1i, . . . , C1n)Ψ



C1i
...
C1n


 ≤ Lj, j = 1, . . . , p (19b)

where C is a n × p matrix and Ψ is the representor matrix
of inner products of the ψxi. Then σ̂2 = s2. Furthermore,
there exists a solution of optimizing problem of the formf̂ = (f̂1, . . . , f̂p)

′, f̂i =
∑n

i=1 Ĉjiψxi for j = 1, . . . , p, whereĈ solves σ̂2 finite dimensional problem. The estimator f̂ is
unique a.s.

Choosing of the Smoothing Parameter :

• in nonparametric least squares, the smoothing parameter L
corresponds to the diameter of the set of functions over which
estimation takes place,

• the larger bounds (much larger than true norm) the less effi-
cient estimators we obtain,

• the smaller bounds the more efficient estimators we have but
inconsistent.

Define the cross validation function CV(L) =
1
n

∑n
i=1

[
yi − f̂−i(xi)

]2

, where f̂−i is obtained by solving

min
f∈Hm

n∑

j=1
j 6=i

[yj − f(xj)]
2 s.t. ‖f‖2

Sob,m ≤ L. (20)

Theorem 2.7 (1–1 Mapping of Smoothing Parameter). Let
L > 0 and

f∗ = arg min
f∈Hm

1

n
[y − f(x)]′ Σ−1 [y − f(x)] s.t. ‖f‖2

Sob,m ≤ L

(21)
then there exists a unique χ > 0 such that

f∗ = arg min
f∈Hm

1

n
[y − f(x)]′ Σ−1 [y − f(x)]+χ ‖f‖2

Sob,m . (22)

This is a 1–1 mapping Z : R+ → R+ : L 7→ χ.
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Figure 1: Monotonic Regression Curve in Sobolev Space
of rank m = 2 for the best value of Smoothing Parameter
χ (left) according to Cross-Validation function CV (right).

3 Isotonia

Definition 3.1 (Constrained Single Equation Model).
Invoke the assumptions for the Single Equation Model
and add these assumptions:

iv) F̃ ⊆ F is a closed set of functions such that the met-
ric entropy logN(δ; F ) ≤ Aδ−ζ for some A > 0, ζ >
0;

v)
{

F̃n

}∞

n=1
is a descending sequence of closed and pos-

sibly random sets of functions F ⊇ F̃1 ⊇ . . . ⊇
F̃1 ⊇ . . . ⊇ F̃ such that

⋂∞
n=1 F̃n = F̃ a.s. and

logN(δ; F̃n) ≤ A′δ−ζ, n = 1, 2, . . . for some A′ > 0.

Metric entropy N(δ; F ) denotes the minimum number of balls
of radius δ in supnorm required to cover the set of functions F .

Theorem 3.1 (Convergence of Constrained Estimation). Let

f̂ satisfy s2 = minf∈Hm
∑n

i
1
n (yi − f(xi))

2 s.t. f ∈ F̃n.

If f0 ∈ F̃ then the conclusion of theorem (Asymptotic
Behaviour of Finite Optimizing Solution) continue to hold

with rate of convergence η = 2m
2m+q. Suppose f /∈ F̃ ,

‖f0‖2
Sob,m is finite and there exists a unique f̃0 ∈ F̃ satisfying

min
f∈F̃

∫
(f0 − f)2 dPx. Then s2 a.s.−−→ σ2

ε,0+
∫ (

f0 − f̃0

)2

dPx,
n→ ∞.

Definition 3.2 (Definite Monotonicity). Optimizing Problem
with Smoothness and Definite Monotonicity Constraint is

min
∈Rn
1

n
[y − Ψ
]′ [y− Ψ
] (23)

s.t. 
′Ψ
 ≤ L & Ψ(1)
 ≥ ~0 (24)

where Ψ is an n × n representor matrix at the data points
x1, . . . , xn, Ψ(1) is a matrix of first derivatives of the represen-
tors evaluated at the points x1, . . . , xn, y is an n × 1 vector of
constants and L > 0.

We should call this Minimizing Problem with Smoothness and
Definite Nondecreasing Constraint for correctness.
Definition determines set of functions

F̃n := cl{
f ∈ Hm(Qq) : ‖f‖2

Sob,m ≤ L, f ′(xi) ≥ 0, i = 1, . . . , n
}
.

Definition 3.3 (Indefinite Monotonicity). Optimizing Problem
with Smoothness and Indefinite Monotonicity Constraint is

min
∈Rn
1

n
[y − Ψ
]′ [y − Ψ
] (25)

s.t. 
′Ψ
 ≤ L (26)

& [Ψ
]i ≤ [Ψ
]j for xi ≤ xj, i, j = 1, . . . , n (27)

where Ψ is an n × n representor matrix at the data points
x1, . . . , xn, y is an n× 1 vector of constants and L > 0.

Definition 3.4 (Definite Convexity). Optimizing Problem with
Smoothness and Definite Convexity Constraint is

min
∈Rn
1

n
[y − Ψ
]′ [y − Ψ
] (28)

s.t. 
′Ψ
 ≤ L & Ψ(2)
 ≥ ~0 (29)

where Ψ is an n × n representor matrix at the data points
x1, . . . , xn, Ψ(2) is a matrix of second derivatives of the rep-
resentors evaluated at the points x1, . . . , xn, y is an n×1 vector
of constants and L > 0.

Analogicaly we can also define Indefinite Convexity.

Theorem 3.2 (Asymtotic Behaviour Based upon Laws
of Large Numbers and Central Limit Theorem). Consider
Constrained Model and suppose that f lies strictly in-
side the ball of functions ‖f‖2

Sob,m < L and f is strictly
monotone increasing and strictly convex and is a lin-
ear combination of the representors ψX1, . . . , ψXn. Let
Π/n = V ar(y(X)). Then

i) f̂(X)
P−→ f(X), n→ ∞,

ii) f̂ (1)(X)
P−→ f (1)(X), n→ ∞,

iii) f̂ (2)(X)
P−→ f (2)(X), n→ ∞,

iv) n1/2
(
f̂(X) − f(X)

)
D−→ N (0,Π), n→ ∞,

v) n1/2 (
̂− 
) D−→ N (0,Ψ−1ΠΨ−1), n→ ∞,

vi) n1/2
(
f̂ (1)(X) − f (1)(X)

)
D−→

N (0,Ψ(1)Ψ−1ΠΨ−1Ψ(1)), n→ ∞,

vii) n1/2
(
f̂ (2)(X) − f (2)(X)

)
D−→

N (0,Ψ(2)Ψ−1ΠΨ−1Ψ(2)), n→ ∞.

Bootstrap :

• Clasic Bootstrap

◮ construct a bootstrap data set (x1, y
B
1 ), . . . , (xn, y

B
n ),

where yBi = f̂(xi) + ε̂Bi .

• An alternative way — “Wild” or “External” Bootstrap (see
[Yat03])

◮ for each estimated residual ε̂i = yi − f̂ (xi) one creates a
two–point distribution for random variable ωi,

◮

ωi Prob(ωi) E(ωi) E(ω2
i ) E(ω3

i )

ε̂i(1 −
√

5)/2 (5 +
√

5)/10 0 ε2
i ε3

i

ε̂i(1 +
√

5)/2 (5 −
√

5)/10 0 ε2
i ε3

i

◮ one then draws from this distribution to obtain ε̂Bi .
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Figure 2: DAX Calloptions Data – Monotonic (Decreas-
ing) and Convex Regression Curve in Sobolev Space of
rank m = 4 with various types of 95% Confidence Inter-
vals.
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