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‘ Abstract I

We deal with an F type test for detection of
changes in multiple linear regresion models. Ap-
proximations to critical values are usually obtained
via the limit distribution of the test statistic under
the null hypothesis. Here we explore another pos-
sibility - a method based on the application of the
permutation principle.

‘ 1. Model I

For the j-thsegment, j=1,...,m+1

Y = 2,0 + € t=t,1+1,...,¢ (1)

Conventionty =1, t,,.1 =n

ti,to, ...ty change points, often unknown
Yty -+ Un observed dependent variables
21, ..., 2 vectors of regressors
01, ..., 041 vectors of regression coefficients

€1,...,En errors

‘ 2. Assumptions I

e The errors are independent and identically dis-
tributed with zero mean, nonzero variance o
and finite moment E|e;|?*2 with some A > 0.

e The errors e; are independent of the regressors
z, for all t and s.

e The regressors =z, are nontrending, I.e.
(Z:Z;)/(t; — t;—1) converges in probability to
some finite positive definite matrix C' as t; —
tioy — oo, 7 = 1,...,m+ 1, where Z, =
(th_1+1, Cee th)/.

otj:[n)\j],jzl,...,m, D= < M1 < ... <
)\m—l—l = 1.

‘ 3. Estimation I

e Least squares principle

e The minimal length of a segmentis h > ¢
(g regressors in each segment):

Th:{(tl,...,tm>i th—thh,Vj:O,...,m}

e Minimal sum of squared residuals (SSR) for a
given partition (¢, ..., t,):

m—+1 ty

. N
Su(tt, . tm) = Z miin Z (yr — 2,9;)

j=1 7 t=tj_1+1

e The change points are estimated as

(Lth st 7tA7TL> — al'g mintl ..... tm€Ty, Sn(th R 7tm>

‘ 4. F type test I

e Hypotheses
Hy: m = 0 (no change)
H,: m =k (k changes)

e Test statistic

SSRy— SSR;
kq 67

sup Fr:(k,q) = (2)
SSRy=ming >/ (y: — 28)*
minimal SSR under H
SSRy. = Sy(t1,..., 1)
minimal SSR under H 4
6p = SSRy/(n — (k+1)q)
consistent estimator of o*
e The limit distribution of (2) under H, (derived in
[1]) depends on parameter € = h/n, number of
changes k under H 4, number of regressors g.

As ¢ — 0, the critical values of (2) diverge to
infinity.

‘ 5. Permutation principle I

e Under H, errors e; are iid — (e1,...,e,) have
the same distribution as (eg,,...,er,), Where
R = (Ry,...,R,) is a random permutation of

(1,...,n).
e ¢; unknown — replaced by their estimators un-
der H, - residuals ¢; from model (1) with m = 0.

e For each random permutation R;,..., Ry,
N << n!and N is large enough, calculate per-
mutational version of (2)

 SSRy(R) — SSRy(R)

k

where observations i, are replaced by permu-
tated residuals ép,.

e Calculate the empirical distribution of (3) and
the corresponding empirical quantiles.

e The conditional limit distribution of (3), given
Y1, ..., Yy, (the data may follow H, or the alterna-
tives) coincides with the limit distribution of (2)
under H, (the proof is sketched in [4] assuming
known change points under H ).

e Therefore the calculated empirical quantiles
serve as the approximations to the critical val-
ues corresponding to the test (2).

e Some simulation results in Table 1

e Example of simulated data in Figure 1

Figure 1:  Simulated data and model. The
first half of observations is represented by cir-
cles (y; = z + e:), the second half by triangles
(y; = 0.5+ 1.5z, + ).
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8.49 9.63 10.72 12.20 8.58 9.82 11.08 12.57
8.60 9.79 11.14 12.67 8.56 9.76 10.88 12.29
8.55 9.70 10.88 12.10 8.54 9.74 10.86 12.28
8.47 9.60 10.70 12.33 8.54 9.82 11.16 12.67
8.47 9.62 10.77 1229 8.56 9.72 10.92 12.32
8.60 9.70 10.89 12.54 8.48 9.74 10.92 12.31

8.63 9.75 10.75 1215 8.63 9.75 10.75 12.15

Normal errors Laplace errors 2 (0,1) (0,3) (0,2)
m & b 5, 0.10 0.05 0.025 0.01 0.10 0.05 0.025 0.01 2 (0,1) (0,2) (0,3)
0 (0,1) (0,1) (0,1) 8.49 9.61 10.67 12.11 8.43 9.61 10.83 12.67 2 (0,1) (%é) (1,2)
1(0,1) (1) (3,1) 853 9.77 10.85 1224 871 9.94 11.06 12.60 2.(0,1) (1,5) (2,2)
1 (0,1) (1,1) (1,1) 8.47 9.68 10.93 12.33 8.44 9.73 10.86 12.27 2 (0,1) (g,g) (1,1)
1 (0,1) (0,%) (0,5) 8.47 9.68 10.99 1225 869 9.86 10.95 12.62 2 (0,1) (1,5) (1,2)
1 (0,1) (0,2) (0,2) 8.59 9.79 11.04 12.46 8.48 9.68 10.77 12.43 BP ACV
10,1) (&2 (2 844 968 10.79 1240 8.30 9.44 10.49 11.86
1 (0,1) (1,2) (1,2) 8.47 9.65 10.74 1220 8.42 9.59 10.80 12.23
2 (0,1) (4,1) (1,1) 8.65 9.74 10.96 12.62 8.73 10.07 11.48 12.97
2 (0,1) (1,1) (2,1) 8.47 9.73 10.77 12.09 8.62 9.73 10.94 12.44

the last row.
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Table 1: Approximations to critical values of the test (2) fork = 2,q = 2, =
0.15. The entries are quantiles x such that P(sup F:(k;q) < z/q) = 1 — «
(c = 0.10,...,0.01). The asymptotic critical values (calculated in [1, 2]) are in



