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RANK TESTS FOR A CHANGE IN CENSORED DATA

LENKA KOBLÍŽKOVÁ

Abstract. A class of rank statistics for testing a change in distribution of ran-
domly censored data developed by Hušková and Neuhaus (2001) is presented.
The limit behaviour of these test statistics under null hypothesis of ’no-change’
in distribution of censored variables is described. Particularly, the Koziol–Green
model of random censorship is studied. The critical values for tests for a change
in location model are obtained through permutation principle. Theoretical re-
sults are accompanied by simulation study.

Rez�me. Rassmotren klass rankovyh statistik dl� proverki gipote-
zy o razladke po sluqaino cenzurirovannym dannym, predloжennyi
Huxkovoi i Neigaussom (2001). Izuqeny asimptotiqeskie svoistva
testovyh statistik pri nulevoi gipoteze. V qastnosti, issledovana
statistiqeska� modeƩ Koziola–Grina. Kritiqeskie znaqeni� byli
poluqeny metodom perestanovok. Teoretiqeskie rezuƩtaty ill�stri-
ru�ts� kompь�ternoi simul�ciei.

1. Introduction

Typically, in survival analysis and reliability theory the quantities of interest are
only partially observable. The data can be randomly censored, truncated or inter-
val censored, see [9], e.g. In this paper we consider the classical model of random
censorship.
The ith subject1 has nonnegative, independent latent survival and censoring times

X0i and Ci, e.g. the variable X0i is the event of interest of life of the i-th patient
included in the study. The patient can be withdrawn from the study due to many
reasons, e.g. an accidental death or a migration of human population.
Actually, instead of survival times we observe pairs

Xi = min(X
0
i , Ci), ∆i = I{X0i ≤ Ci}, i = 1, . . . , n,

where the symbol I(A) denotes the indicator of a set A.
We assume that X01 , . . . , X

0
n and C1, . . . , Cn are mutually independent random

variables such that for some unknown γ ∈ (0, 1] and η ∈ (0, 1] (η and γ need not
be the same) X01 , . . . , X

0
[γn] and X0[γn]+1, . . . , X

0
n have the continuous distribution

functions F1 and F2, respectively, F1 6= F2, and C1, . . . , C[ηn] and C[ηn]+1, . . . , Cn

have the continuous distribution functions G1 and G2, respectively, G1 6= G2. The
point γ (or [γn]) is called the change point.
We are interested in testing problem (H0, A), where

(1.1) H0 : γ = 1 and A : γ ∈ (0, 1).
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This is one of the basic tasks in the change point analysis. More information about
the change point analysis can be found in [3], e.g. The testing problem (1.1) does
not concern censoring variables. Generally, we assume that the distribution of cen-
soring variables can have changed. The change-point problem for censored data is
considered only in a few papers, e.g. test procedures based on quantile function were
developed in [1] or tests and an estimator of the change point based on U -statistics
were studied in [10] and [5]. Particularly, limit properties of nonparametric tests for
such a problem can be found in [4] and [7], e.g.

Remark. If the possible change point γ is known then the testing problem reduces
to a two-sample testing problem with censored data for which a number of test
statistics have been developed, see [8] and [9], e.g.

2. Test statistic and limit theorem

Hušková and Neuhaus in [7] have developed their test along the lines of a two-sample
rank test for the random censorship applying the union-intersection principle, for
more details see [3], e.g. The test procedure is based on

(2.1) Lk = Lk(τ0) =
|Wk(τ0)|
√

Vk(τ0)
, k = 1, . . . , n − 1,

where

Wk(τ0) =
1√
n

k
∑

j=1

an(j),

Vk(τ0) =
1

n

∫ τ0

0
w2n(t)

∑k
j=1 Yj(t)

∑n
j=k+1 Yj(t)

Y 2(t)
dN(t) + vk,(2.2)

with

(2.3) an(j) =

∫ τ0

0
wn(t) dNj(t)−

∫ τ0

0

wn(t)Yj(t)

Y (t)
dN(t),

Nj(t) = ∆jI(Xj ≤ t), Yj(t) = I(Xj ≥ t);

N(t) =

n
∑

j=1

Nj(t), Y (t) =

n
∑

j=1

Yj(t).

vk =
k(n − k)

n2
(I(k ≤ log logn) + I(k ≥ n − log logn))

Due to the terms vk we ensure that Vk(τ0) are bounded away from 0. The value τ0
is such a positive number for which

0 < τ0 < τ := sup{x; (1− F1(x))(1 − Gj(x)) > 0, j = 1, 2}.
Appropriate choice or estimator of τ0 has not yet been found.
The weight functions wn(Xj ,△j ; j = 1, . . . , n) ≥ 0 fulfil, as n → ∞,

(2.4) sup
0≤t≤τ0

|wn(t)− w(t)| = oP((log logn)−1),

where w is a continuous nonrandom function on [0, τ0]. An important class of weight

functions fulfilling (2.4) is wn(t) = (Ŝn(t−))ρ
(

Y (t)
n

)κ

I(Y (t)>0), where ρ, κ≥0 and

Ŝn(t−) =
∏

i:Xi<t

(

1− ∆i

Y (Xi)

)

is the left-continuous Kaplan–Meier estimate of the

survival function.
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Under the hypothesis H0 and under mild assumptions the test statistic Lk defined
in (2.1) has asymptotically standard normal distribution as min(k, n − k) → ∞,
k = 1, 2, . . . , n − 1, see [8].
Since in our testing problem (1.1) the alternative is A = ∪n−1

k=1Hk, Hk : [γn] = k,
we reject H0 if at least one of Lk, k = 1, . . . , n − 1, takes large value. This leads to
the rejection region

Tn = Tn(τ0) = max
1≤k<n

Lk ≥ cn(α),

where cn(α) is determined in such a way that the test has the prescribed level α.
To apply this test procedure we need at least an approximation for the criti-

cal value cn(α). In the change point analysis we usually get it through the limit
distribution of the test statistic under H0.

Theorem 2.1. Suppose X01 , . . . , X
0
n, C1, . . . , Cn are independent random variables.

Let X01 , . . . , X
0
n have arbitrary continuous distribution function F . Let C1, . . . , C[nη]

have continuous distribution function G1 and C[nη]+1, . . . , Cn have continuous dis-
tribution function G2 for some η ∈ (0, 1]. Let (2.4) be satisfied and let

(2.5)

∫ τ0

0
w(t)(1 − Gi(t)) dF (t) > 0, i = 1, 2.

If n → ∞, then for all y ∈ R we have

(2.6) P
(

d1(logn)Tn(τ0) ≤ y + d2(logn)
)

→ exp
{

− 2e−y
}

,

where

d1(t) =
√

2 log t, d2(t) = 2 log t+
1
2 log log t − 1

2 log π.(2.7)

Proof. The proof can be found in [7]. �

3. Koziol–Green model

Consider the Koziol–Green (KG) model of random censorship, i.e., let us assume the
relation between the distribution functions of survival and censoring variables in the
form 1− G(t) = (1− F (t))λ for some unknown constant λ>0 and all t.

Remark. In the KG model γ = η, so under the hypothesis H0 censoring variables
C1, . . . , Cn are i.i.d. too, and under the alternative A the distributions of survival
and censoring variables have changed in the same time point. If λ = 0, the survival
variables X0i ’s are not censored.

In the KG model the limit behaviour of Tn(τ0) under H0 can be obtained using
permutation principle. In this case we take a random permutation R = (R1, . . . , Rn)
of (1, . . . , n) and by Lemma 2.2 (special case η = 1) in [7] instead of 1√

Vk(τ0)
,

where Vk(τ0) is defined in (2.2), we can use the standardization
√

n2

k(n−k)
1

σn
, where

σ2n =
1

n−1

∑n
j=1(an(j)− ān)

2 and ān =
1
n

∑n
j=1 an(j). Denoting Tn1(τ0) such a form

of Tn(τ0), the mutual relation is given by |Tn(τ0) − Tn1(τ0)| = oP((log logn)−1/2),
as n → ∞. Since ān = 0 for the scores an(j) defined in (2.3) we have

Tn1 = Tn1(τ0) = max
1≤k<n

√

n

k(n − k)

1

σn

∣

∣

∣

∣

∣

∣

k
∑

j=1

an(j)

∣

∣

∣

∣

∣

∣

,

where σ2n =
1

n−1

∑n
j=1(an(j))

2.
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Theorem 3.1. Suppose X01 , . . . , X
0
n, C1, . . . , Cn are independent random variables.

Let X01 , . . . , X
0
n have arbitrary continuous distribution function F . Let C1, . . . , Cn

have the continuous distribution function G = 1− (1−F )λ for some λ>0. Let (2.4)
be satisfied and let

(3.1)

∫ τ0

0
w(t)(1 − G(t)) dF (t) > 0, i = 1, 2.

If n → ∞, then for all y ∈ R we have

(3.2) P
(

d1(logn) Tn1 ≤ y + d2(log n)
)

→ exp
{

− 2e−y
}

,

where d1 and d2 are defined in (2.7).

Proof. Realize that the random variables
∑k

j=1 an(j), k = 1, . . . , n, have the same

distribution as
∑k

j=1 an(Rj), where R = (R1, . . . , Rn) is a random permutation

of (1, . . . , n) and
∑k

j=1 an(Rj), k = 1, . . . , n, given (X1,△1), . . . , (Xn,△n), can be
viewed as simple linear rank statistics. Their expectations are zero and variances are
k(n−k)

n σ2n. By Lemma 2.1 (special case η = 1) in [7] and (3.1), the scores defined
in (2.3) fulfil for convergence in probability

lim inf
n→∞

1

n

n
∑

j=1

(an(j)− ān)
2 ≥ D1, lim sup

n→∞

1

n

n
∑

j=1

|an(j)− ān|2+u ≤ D2(3.3)

for some positive D1, D2 and u = 2. Thus Theorem 2 in [6] can be applied and we
get

P (d1(log n)Tn1(R) ≤ y + d2(logn)|(X1,△1), . . . , (Xn,△n))
P−→ exp

{

−2e−y
}

,

Since the limit distribution does not depend on the condition (X1,△1), . . . , (Xn,△n)
we can conclude that (3.2) holds true. �

Next we describe the permutation test related to the statistic Tn1 and we will
study its limit performance. More information about permutation tests for changes
in location can be found in [2], e.g.
The permutation distribution of Tn1 can be described as the conditional distri-

bution given (X1,△1), . . . , (Xn,△n) of

Tn1(R) = max
1≤k<n

√

n

k(n − k)

1

σn

∣

∣

∣

∣

∣

∣

k
∑

j=1

an(Rj)

∣

∣

∣

∣

∣

∣

.

This permutation distribution Fn(·, (XXX,△△△)) = Fn(·, (X1,△1), . . . , (Xn,△n)) can be
expressed as

Fn(x, (XXX,△△△)) = 1
n!
#{rrr ∈ Rn;Tn1(rrr) ≤ x}, x ∈ R,

where Rn is the set of all permutations of (1, . . . , n) and #A denotes the cardinality
of a set A. Denoting by xn(α, (XXX,△△△)) the corresponding (1−α)-quantile, the critical
region of the permutation test based on Tn1 with the level α has the form

Tn1 ≥ xn(α, (XXX,△△△)).

Next we derive the limit distribution of the permutation distribution Fn(·, (XXX,△△△)).
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Theorem 3.2. Suppose the KG model of random censorship. Let X01 , . . . , X
0
[nγ]

have continuous distribution function F1 and X0[nγ]+1, . . . , X
0
n have continuous dis-

tribution function F2 for some γ ∈ (0, 1]. Let (2.4) be satisfied and let

(3.4)

∫ τ0

0
w(t)(1 − Fi(t))

λ dFi(t) > 0, i = 1, 2.

If n → ∞, then for all y ∈ R we have

P
(

d1(logn)Tn1(R) ≤ y + d2(log n)|(X1,△1), . . . , (Xn,△n)
)

P−→ exp
{

− 2e−y
}

,

where d1 and d2 are defined in (2.7).

Proof. Denote m = [nγ]. Realize that Tn1(R) given (X1,△1), . . . , (Xn,△n) can be
viewed as a function of a simple linear rank statistic. Verify (3.3):
By a slight modification of the proof of Lemma 2.1 in [7] we obtain, as n → ∞,

sup
0≤x≤τ0

∣

∣

∣

∣

∫ x

0

wn(t)

Y (t)
dN(t)−

∫ x

0

w(t) γ (1− F1(t))
λ

γ(1− F1(t))λ+1 + (1− γ)(1 − F2(t))λ+1
dF1(t)

−
∫ x

0

w(t) (1 − γ) (1− F2(t))
λ

γ(1− F1(t))λ+1 + (1− γ)(1 − F2(t))λ+1
dF2(t)

∣

∣

∣

∣

= oP(1).

Moreover, by (2.4), sup1≤j≤n|
∫ τ0
0 wn(t) dNj(t)−

∫ τ0
0 w(t) dNj(t)| = oP(1), as n → ∞.

Denoting

a∗(j) =

∫ τ0

0
w(t) dNj(t)−

∫ τ0

0

w(t)Yj(t) γ (1− F1(t))
λ

γ(1− F1(t))λ+1 + (1− γ)(1− F2(t))λ+1
dF1(t)

−
∫ τ0

0

w(t)Yj(t) (1 − γ) (1− F2(t))
λ

γ(1− F1(t))λ+1 + (1− γ)(1− F2(t))λ+1
dF2(t)

we observe that, as n → ∞, max1≤j≤n |an(j)− a∗(j)| = oP(1) and hence

1

n

n
∑

i=1

(an(j)− a∗(j))v = oP(1), v = 1, 2, 3, . . .

The random variables a∗(1), . . . , a∗(n) are bounded,

|a∗(j)| ≤ max
0≤t≤τ0

|w(t)|
(

1 +
1

γ(1− F1(τ0))λ+1 + (1− γ)(1− F2(τ0))λ+1

)

,

and a∗(1), . . . , a∗(m) are i.i.d., a∗(m+1), . . . , a∗(n) are i.i.d. Direct calculations give

γ E a∗(1) + (1− γ) E a∗(n) = 0,

γ E(a∗(1))2 + (1− γ) E(a∗(n))2 = γ

∫ τ0

0
w2(t)(1− F1(t))

λ dF1(t)

+ (1− γ)

∫ τ0

0
w2(t)(1 − F2(t))

λ dF2(t) > 0.

The verification of (3.3) is then finished by application of the weak law of large
numbers, so Theorem 2 in [6] can be applied. �

Remark. Notice that the assumptions of Theorem 3.2 cover both the null hypothesis
and the alternative. Moreover, the limit permutation distribution is the same in both
cases and does not depend on (X1,△1), . . . , (Xn,△n). This means that the critical
value for the permutation test provides an approximation for the critical value to
the test based on Tn1.
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Under the hypothesis H0 the distributions of Tn1 and Tn1(R) coincide and the
permutation distribution provides the exact critical values for our testing problem.

4. Simulations

To compare the behaviour of the above described procedures for the testing a change
in distribution of survival times, i.e., asymptotic and empirical critical values for Tn

and Tn1, we have performed some simulations in which we had generated data from
the location model, where we choose F as exponential E(β) and lognormal L(β)
distribution

F (x) = 1− exp(−βx), or F (x) = Φ(log(βx)), x > 0,

with parameter β >0 and Φ standing for the standard normal distribution function.
We assume τ0 =∞. In this case the test depends on Xj and ∆j only:

Wk(∞) =
1√
n

k
∑

j=1

an(j), an(j) = wn(Xj)∆j −
n
∑

l=1

wn(Xl)∆l
Yj(Xl)

Y (Xl)
;

Vk(∞) =
1

n

n
∑

l=1

w2n(Xl)∆l

∑k
j=1 Yj(Xl)

∑n
j=k+1 Yj(Xl)

Y 2(Xl)
+ vk;

wn(Xl) =

(

∏

i:Xi<Xl

(

1− ∆i

Y (Xi)

)

)ρ
(

Y (Xl)

n

)κ

.

We use three types of weights for

(1) log-rank-type test (LR): ρ = 0, κ = 0;
(2) Gehan–Wilcoxon-type test (GW): ρ = 0, κ = 1;
(3) Prentice–Wilcoxon-type test (PW): ρ = 1, κ = 0.

The asymptotic critical values according to (2.6) and (3.2) for the chosen sample
size n = 120 are summarized in Table 1.

n 10% 5% 2.5% 1%

120 3.236 3.643 4.042 4.564

Tab. 1 Asymptotic critical values for Tn and Tn1.

4.1. Critical values for the statistic Tn. Suppose the classical model of random
censorship. Let us proceed with n = 120 as follows:

(1) X01 , . . . , X
0
n are simulated from the chosen distribution F ;

(2) C1, . . . , Cn are simulated using the chosen combination of parameters
Ci = δC

n I(i > [nη]) + ǫi for i = 1, . . . , n (we use η = 0.5, δC
n = 0, 2,

ǫi ∼ Unif(0, b), b = 1 for F = E(1) and b = 4 for F = L(1));
(3) pairs (X1,∆1), . . . , (Xn,∆n) are computed;
(4) Tn is calculated and its value stored;
(5) the steps (1)-(4) are repeated 104 times;
(6) empirical quantiles related to the empirical distribution function of Tn are
computed and used as an estimator of the actual quantiles.

In Table 2 the results of the simulation are summarized and in Table 3 the results of
the simulation for the particular situation where survival variables X01 , . . . , X

0
n are

not censored can be found.
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exponential lognormal
δC
120 c120(α) 10% 5% 2.5% 1% 10% 5% 2.5% 1%

0 LR 3.460 4.142 4.733 6.153 3.518 4.173 5.003 6.429
0 GW 3.315 4.009 4.672 5.700 3.354 3.960 4.696 6.069
0 PW 3.411 4.074 4.752 6.049 3.415 4.070 4.895 6.022
2 LR 3.464 4.091 4.705 5.900 3.477 4.071 4.781 6.128
2 GW 3.329 3.939 4.678 5.999 3.378 4.036 4.834 6.015
2 PW 3.358 4.017 4.777 5.805 3.394 4.010 4.700 6.058

Tab. 2 Empirical critical values for Tn.

exponential lognormal
c120(α) 10% 5% 2.5% 1% 10% 5% 2.5% 1%

LR 3.454 4.048 4.846 5.982 3.453 4.093 4.821 5.961
GW 3.298 3.921 4.637 5.602 3.374 3.999 4.726 5.856
PW 3.348 3.970 4.715 5.617 3.349 3.983 4.721 5.862

Tab. 3 Empirical critical values for Tn - no censoring, no change.

The empirical critical values are almost not influenced by the change in location
of the distribution of censoring variables Ci’s, the choice of the weights and the
underlying distribution. Comparing the results in Table 2 and Table 3, we can see
that the empirical critical values in case of censored survival variables X0i ’s are
similar to their counterparts in case of uncensored X0i ’s. Surprisingly, the simulated
critical values are substantially larger than the corresponding asymptotic ones, which
is probably influenced by large variability of Vk defined in (2.2) and it needs another
extended investigation.

4.2. Critical values for the statistic Tn1. Suppose the KG model of random
censorship. Let us proceed with n = 120 as follows:

(1) X01 , . . . , X
0
n are simulated using the chosen combination of parameters

X0i = δn I(i > [nγ]) + εi for i = 1, . . . , n (we use γ = 0.5, δn = 0, 2, εi ∼ F ,
F = E(1) or L(1));

(2) C1, . . . , Cn fulfilling the KG model are simulated (we use λ = 0, 0.5, 1);
(3) pairs (X1,∆1), . . . , (Xn,∆n) are computed;
(4) a random permutation rrr = (r1, . . . , rn) of (1, . . . , n) is generated;
(5) Tn1(R) with R = rrr is calculated and its value stored;
(6) the steps (4)-(5) are repeated 104 times;
(7) empirical quantiles related to the empirical distribution function of Tn1(R)
are computed and used as an estimator of the actual quantiles.

The empirical critical values for Tn1(R) obtained through the permutation principle
do reasonable approximation of the critical values for Tn1. In Table 4 the results of
the simulation are presented.
The empirical critical values are almost not influenced by the change both in

location model and the underlying distribution, and they are substantially smaller
than the corresponding asymptotic ones. In case of no censoring the empirical critical
values for the log-rank-type test are larger than for other two tests (and very similar
to the asymptotic critical values), but in other cases we can see similar results for the
considered weights. Comparing the obtained critical values with the results in [2],
we see similar patterns. The difference between the empirical critical values for Tn

and Tn1 is caused by the choice of standardization of the statistic Wk(∞).
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exponential lognormal
δ120 λ c120(α) 10% 5% 2.5% 1% 10% 5% 2.5% 1%

0 0 LR 3.089 3.447 4.121 4.470 3.045 3.447 4.070 4.470
0 0 GW 2.752 2.994 3.216 3.462 2.748 2.987 3.196 3.451
0 0 PW 2.744 2.976 3.197 3.441 2.735 2.974 3.208 3.460
0 0.5 LR 2.800 3.082 3.302 3.617 2.861 3.222 3.532 3.718
0 0.5 GW 2.756 2.993 3.190 3.456 2.733 2.985 3.179 3.446
0 0.5 PW 2.757 2.986 3.193 3.450 2.759 2.982 3.200 3.477
0 1 LR 2.905 3.363 3.535 3.641 2.831 3.184 3.410 3.588
0 1 GW 2.835 3.088 3.321 3.577 2.852 3.119 3.386 3.630
0 1 PW 2.761 3.005 3.207 3.511 2.804 3.042 3.250 3.513
2 0 LR 3.033 3.447 3.963 4.470 3.042 3.447 3.984 4.470
2 0 GW 2.730 2.968 3.183 3.419 2.746 2.971 3.188 3.435
2 0 PW 2.735 2.963 3.170 3.428 2.737 2.982 3.198 3.477
2 0.5 LR 2.921 3.068 3.311 3.606 2.956 3.409 3.555 3.788
2 0.5 GW 2.784 3.007 3.233 3.545 2.745 2.977 3.210 3.458
2 0.5 PW 2.747 2.955 3.165 3.433 2.757 2.999 3.219 3.500
2 1 LR 2.977 3.152 3.350 3.658 2.772 3.038 3.257 3.528
2 1 GW 2.833 3.114 3.359 3.622 2.829 3.071 3.285 3.575
2 1 PW 2.775 3.010 3.246 3.537 2.756 3.003 3.196 3.450

Tab. 4 Empirical critical values for Tn1(R).
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