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ON BOOTSTRAP IN NON-NEGATIVE AR(1) PROCESS

JIŘÍ HÁJEK

Abstract. Various methods of the choice of the bootstrap sample size in them

out of n bootstrap for non-negative AR(1) process are presented as well as some
numerical results for these methods. Then a smoothed bootstrap is proposed
as a solution of problems that appear in the m out of n bootstrap and some
numerical results show its potential.

Rez�me. V dannoi statьe izuqaets� problemma ocenki parametrov v

neotricateƩnyh processah avtoregressii metodom ”m-n” butstrзp i

pokazany razliqnye metody vybora obъ�ma vyborki. Na qislovyh

rezulьtatah vidny problemy зtih metodov. Kak rexenie predloz-

hen gladkii butstrзp i pri pomowi simul�cii pokazany ego voz-

moжnosti.

1. Introduction

The bootstrap received quite a lot attention recently, because availability of fast
computers makes it possible to use this technique in many applications. It have
been used in the context of time series too, although it requires slightly different
approach. There exists a number of methods that consistently bootstrap time se-
ries. In this paper we are interested in non-negative time series, which means that
also innovations need to be non-negative. This brings serious problems and stan-
dard bootstrap methods cannot be used for consistent estimation of distribution of
parameter estimates.

2. Non-negative AR(1) process

Non-negative AR(1) process is defined as

(1) Xt = φXt−1 + εt, t = 1, 2, . . . , n,

where 0 < φ < 1 and εt ≥ 0 is a strict white noise with a continuous distribution
function F . A natural estimator of φ for this process is

(2) φ̂n = min

(

X1
X0

,
X2
X1

, . . . ,
Xn

Xn−1

)

,

which was for the first time studied in [1]. This estimator is also the maximum
likelihood estimator when innovations are exponentially distributed (with the density
f(y) = λ−1 exp(−y/λ)I[y > 0], where I[A] denotes the indicator of the event A).
We will focus on (2) in the rest of the article, because our main target will be to

study possibilities of bootstrapping this estimator.
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3. Moon bootstrap

As we know, bootstrap yields consistent estimates of distribution in very general
class of problems. However there are reported problems in the literature, where the
common bootstrap scheme is unable to give satisfactory results. An example of this
problem is the estimator (2). An usual solution is to change the common bootstrap
scheme to a bootstrap, where the bootstrap sample size (usually denoted m) is
smaller than original sample size n. To simplify the notation we can refer to this
bootstrap as moon bootstrap (where “moon” is an abbreviation of “m out of n”),
as the authors of [4] do.
The first paper that discussed use of the moon bootstrap for non-negative auto-

regressive processes was [2], where authors presented a description of the method
in case of non-negative AR(1) process together with the proof of consistency of
this method. Later Feigin and Resnick in [3] extended the method to higher order
non-negative autoregressive processes, again with the proof of consistency. In case
of higher orders the simple estimator (2) must be replaced by linear programming
estimators.
The whole method in the case of non-negative AR(1) process can be described as

follows.

(1) Estimate φ using the formula (2) for φ̂n.
(2) Calculate residuals by

ε̂i = Xi − φ̂nXi−1, 1 ≤ i ≤ n.

(3) Generate ε∗i , 1 ≤ i ≤ m by a simple random sampling with replacement from
{ε̂i, 1 ≤ i ≤ n}, where m is the bootstrap sample size which must satisfy
m = m(n)→ ∞ and m = o(nθ) for some θ depending on the distribution of
innovations. Exact conditions can be found for example in [2] or [5].

(4) Construct the bootstrap process X∗ as

X∗
i = φ̂nX∗

i−1 + ε∗i , i = 1, 2, . . . , m,

where X∗
0 can be chosen as 0, which was proposed in [2]. Although the

effect of this starting value is asymptotically negligible, better results can
be achieved with a value better approximating the stationary distribution
of Xi. The easiest way to manage it is to set X∗

0 as a randomly chosen value
from {Xi : 1 ≤ i ≤ n}.

(5) Calculate the estimate of φ for the bootstrap process as

φ̂∗
m = min

1≤i≤m
{X∗

i /X∗
i−1}.

(6) Repeat steps 3-5 B times.

Using this method we can approximate the distribution Tn = φ̂n − φ by

(3) T ∗
n =

an

am

(φ̂∗
m − φ̂n),

where an is defined as

(4) an = F−1(n−1) = inf{x : F (x) ≥ n−1}.

This result can be then used for example to remove the bias of φ̂n, as is shown in [5]
together with other results.
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4. The choice of bootstrap sample size

The method described in the previous section needs for its application a selection
of bootstrap sample size m. We have some asymptotical constrains for m, but they
are of little use in practical applications.
One method for the choice of m was proposed in [2] exactly for non-negative

AR(1) process. This is an ad-hoc method without any theoretical background and is
based on the jackknife. In this method we repeat the bootstrap for various bootstrap
sample sizes m. Then for each 1 ≤ i ≤ n the bootstrap as described above is made,
but ε∗k, 1 ≤ k ≤ n are resampled from {ε̂j , 1 ≤ j ≤ n, j 6= i}. Each of these bootstraps
gives us a delete-one estimate q̂m,−i of some quantity q, which can be for example
the mean or a percentile. We denote by q̂m the ordinary moon bootstrap estimate
of this quantity and define

(5) L(m) =
n

∑

i=1

(q̂m,−i − q̂m)
2,

which estimates a quantity proportional to the risk of the estimator q̂m. We select
such m which minimizes L(m) as the best bootstrap sample size and corresponding
q̂m as an estimate of q.
Another possibility is to fix m approximately as

√
n, which is based on the empi-

rical observations in [5] and seems to work well in a wide class of models.
Completely different approach of choosing bootstrap sample size was proposed

in [4]. This method works generally for all moon bootstrap problems. The main

idea consist in the fact that the distance between Ln(P ) and L̂m(P̂n) (denoted ∆m)

is stochastically equivalent to the distance between L̂m(P̂n) and L̂ m

2
(P̂n) (denoted

∆̂m). Here Ln(P ) is the true and unknown distribution while Lm(P̂n) denotes a

distribution estimated using m samples and the empirical distribution P̂n. As an
optimal bootstrap sample size is then chosen such m which minimizes ∆̂m.
In order to find out which of these proposed methods is the most suitable for

choosing bootstrap sample size we made a numerical simulation of the problem which
compares Kolmogorov’s distance1 of true and estimated distributions. The results
presented in Tables 1 and 2 show that neither of the adaptive methods is better than
the “fixed” method that always uses bootstrap sample size m approximately as

√
n.

Although the adaptive methods are getting better with higher length of original
time series n, it seems that the problem of choosing bootstrap sample size (not only
in case of non-negative time series) is still an open issue and should be subject of
further investigation. The jackknife method is also very time consuming and thus
we can not suggest using it. By contrast the other adaptive method is quite fast and
the results for longer time series are not so bad, so it could be useful in some cases.

Method average distance std.dev. 95% conf.interval
Jackknife 0.181 (0.088) (0.171;0.191)
Adaptive 0.166 (0.079) (0.157;0.175)
Fixed 0.145 (0.078) (0.137;0.154)

Tab. 1 Average Kolmogorov’s distance between bootstrap estimated and true distributions

of φ̂n − φ for exponential distribution of innovations and n = 50 (300 simulations).

1Kolmogorov’s distance of two distribution functions F and G is defined as sup
x∈R |F (x)−G(x)|
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Method average distance std.dev. 95% conf.interval
Jackknife 0.134 (0.063) (0.127;0.141)
Adaptive 0.130 (0.058) (0.123;0.137)
Fixed 0.126 (0.063) (0.119;0.133)

Tab. 2 Average Kolmogorov’s distance between bootstrap estimated and true distributions

of φ̂n − φ for exponential distribution of innovations and n = 100 (300 simulations).

5. Smoothed bootstrap

We have seen in previous sections that a consistent method exists for bootstrapping
non-negative autoregressive process. However we can go further and ask if the me-
thod is the best what we can achieve or if there is a better way. There are some
obvious problems in the moon bootstrap method described earlier. The first is that
we need to choose a proper bootstrap sample size m, which can be quite challenging
problem as we saw in the previous section. Then also the distribution of innovations
is needed because of normalizing constant in (3) and that limits the method a lot.
Overall performance of the method can be discussed as well.
In order to get further we need to study what actually makes problems in the

bootstrap. Let us take the ordered estimated innovations of the process and denote
them ε̂[1], ε̂[2], . . . , ε̂[n]. As we can easily see, the smallest estimated innovation ε̂[1]
is always equal to 0. Then, when we set bootstrap sample size m equal to n, use ε̂[1]
for resampling and define the distribution T ∗

n = φ̂n − φ̂∗
n, we can easily prove that

(6) P ∗(T ∗
n = 0) = 1−

(

1− 1
n

)n

→ 1− e−1.

However that means that this method is inconsistent, because as in a continuous
distribution P (T ∗

n = 0) must equal 0. So we must leave out ε̂[1] (and possibly others
that equal zero) from the resampling scheme, but then our results are biased. These
problems with consistency can be solved by employing the moon bootstrap, but it
means that other problems described earlier appear.
This analysis suggests that our problem is in the discrete behaviour of estimated

innovations. Therefore we would like to replace the empirical distribution function,
that is usually used in the context of bootstrap for resampling purposes, by a distri-
bution function of a continuous distribution. That is the reason we get to the smoo-
thed bootstrap where exactly a continuous distribution is used for resampling instead
of a discrete one. So the task now is to make a non-parametric (or semi-parametric)
estimation of the distribution of innovations εt. Estimated density function (or corre-
sponding quantile function) of such distribution is used for generation of ε∗i , which
can be then used for construction of the bootstrap process X∗ and calculation of

corresponding estimate φ̂∗
n as is described in the moon bootstrap procedure.

We have a wide selection of possible methods which can make non-parametric
estimation of distribution function F (or a density f). Usually kernel estimates are
used, but in our case there is a problem with density cut off at 0, so a different method
which can handle this problem would be useful. A promising family of method seems
to be the methods based on splines, particularly a logspline method.
The logspline method we use is described in [6] and [7] and its main idea consists

in that logarithm of density function is modeled by cubic splines. This objective is
achieved in the following way. Let t1, . . . , tK be a sequence of real numbers such
that −∞ < t1 < · · · < tK < ∞, where K is an integer satisfying K ≥ 4. Let S0
denote a group of twice continuously differentiable functions s on R such that the
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restriction of s to each of the intervals (−∞, t1), (t1, t2), . . . , (tK−1, tK), (tK ,∞) is
a cubic polynomial. Functions s from S0 are called cubic splines with knots t1, . . . , tK ,
where the third derivative of s is not continuous. Let S denote a subspace of S0 such
that s ∈ S is linear on (−∞, t1) and on (tK ,∞). S has a basis 1, B1, . . . , BK−1 and
we further choose B1 as a linear function with negative slope on (−∞, t1), BK−1

as a linear function with positive slope on (tK ,∞), B2, . . . , BK−1 as constants on
(−∞, t1) and B1, . . . , BK−2 as constants on (tK ,∞). Then the density function is
defined as

(7) f(y, θ) = exp (θ1B1(y) + · · ·+ θK−1BK−1(y)− c(θ)) , y ∈ R,

where c(θ) is a normalizing constant defined as

(8) c(θ) = log

(
∫

R

exp (θ1B1(y) + · · ·+ θK−1BK−1(y)) dy

)

,

and θ = (θ1, . . . , θK−1)
′ ∈ Θ is a vector of real parameters with θ1 < 0 and θK−1 <

0. Then the condition
∫

R
f(y; θ)dy = 1 is clearly fulfilled. f(·; θ), θ ∈ Θ creates

a logspline family of density functions.
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Fig. 1 Comparison of three different bootstrap methods for exponentially distributed inno-

vations.



On bootstrap in non-negative AR(1) process 131

Maximum-likelihood estimate θ̂ of θ is obtained by maximizing the log-likelihood
function using modified Newton–Raphson algorithm. Other details of the method,
like handling tails of distributions and selecting knots count and position, can be
found in [6].
In order to find out potential of the smoothed bootstrap for non-negative auto-

regressive models, we made a numerical simulation that compares it with the moon
bootstrap. There are results presented in Figures 1 and 2. All the simulations are
made with a series of length 50 and with φ chosen to be 0.5. The exponential distri-
bution of innovations with λ = 1 is used in Figure 1 while uniform R(0, 2) is used in

Figure 2. The dashed line represents theoretical distribution T50 = φ̂50−φ simulated
by Monte-Carlo method and solid lines represent results of each bootstrap method
used for estimation of T50. In the first column the theoretical result is compared
with ordinary bootstrap where bootstrap sample size is chosen the same as original
sample size, i.e. m = 50. In the second column is the result of moon bootstrap with
m = 7 and in the third column is the result of smoothed bootstrap with logspline
semi-parametric density estimation used as implemented in R language. There are
estimated density plots in the upper panel and to emphasize details logarithm of
density is used in the lower panel.
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Fig. 2 Comparison of three different bootstrap methods for uniformly distributed innovati-

ons.
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The results in Figures 1 and 2 are quite nice. However these results are based just
on one simulation which can be misguiding. Therefore results of another simulation
are presented in Table 3, where 1000 repetitions make the results more informative.

Moon bootstrap (m = 7) Smoothed bootstrap

Bias corrected φ̂ 0.49921 0.50045
95% conf.interval for

bias corrected φ̂ (0.49857; 0.49987) (0.49979; 0.5011)
Average Kolmogorov’s distance

from the true distr. of φ̂ − φ 0.1384 0.0896

Tab. 3 Results of 1000 bootstrap simulations for the exponential distribution of innovations

and n = 50.

Results of all these simulations are very promising, because the smoothed boot-
strap approximates the theoretical distribution far better than the moon bootstrap
does. Certainly more theoretical investigation is necessary in order to state proper-
ties of the method. Some more numerical studies are needed as well to prove its
abilities to work in practical applications.

6. Conclusion

We have seen that an adaptive choice of bootstrap sample size for the m out
of n bootstrap is still a challenging and unsolved issue. It was shown by a numerical
study that none of the methods performs really well and so none of them can be
recommended for practical use. The smoothed bootstrap method, that was presented
later, gives very promising results, which need to be further studied and particularly
a deeper theoretical background should be created.
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