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COMPLEX CHARACTERIZATION OF TEXTILE SURFACE

PROFILE

MIROSLAV BRZEZINA, JIŘÍ MILITKÝ

Abstract. Thickness variation is one of important characteristics of textiles
for special clothing acting as special barrier against influence of aggressive en-
vironment and industrial textiles as well. This characteristic is one of key pa-
rameters of quality of textiles production. The result of measurements is the
so-called thickness profile. The proposed analysis of this profile is based on
the spectral analysis, statistical analysis and calculation of effective fractal di-
mension. This scale invariant characteristic of thickness variation is suitable for
characterization of complex curves. From spectral density function it is possible
to estimate the typical periodicity caused by textile pattern. The application of
these characteristics for description of special barrier clothing (heat resistant)
surface thickness variation is discussed.

Rez�me. Variaci� tolwiny �vl�ets� odno� iz vaжne�xih harakte-

ristik kaqestva tekstiƩnyh izdeli� ispoƩzuemyh v promyxlen-

nosti. Ona opredel�ets� po izmereni�m tak nazyvaemogo profil�

tolwiny. V зto� statьe predloжen metod analiza зtogo profil� na

osnove spektraƩnogo analiza, statistiqeskogo analiza i vyqisleni�

зffektivno� fraktaƩno� razmernosti.

1. Introduction

Roughness of engineering surfaces has been traditionally measured by the stylus pro-
filing method creating surface profile [7]. This profile characterizes thickness (height)
variation in selected direction. Modern methods are based on the image processing
of surface images [10]. Surface irregularity of plain textiles has been identified by
friction [1], contact blade [2,4], lateral air flow [3], step thickness meter [6] or sub-
jective assessment [5].
Standard methods of surface profile evaluation are based on the relative varia-

bility characterized by the variation coefficient (analogy with evaluation of yarns
mass unevenness) [8] or simply by the standard deviation. This approach is used in
Shirley software for evaluation of results for step thickness meter [9]. Greenwood [4]
proposed technique based on the definition of local maxims (peaks) and derivation
of peaks height distribution. A lot of recent works is based on the assumption that
the stochastic process (fractional Brownian motion) can describe thickness vari-
ation [13]. For characterization of smoothness is then possible to use Hausdorf or
fractal dimension D [12]. Fractal dimension is closely connected with statistical cha-
racteristics of signals as variogram, correlogram and power spectral density function.
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This work is devoted to the analysis of thickness variation R(d) obtained from
Shirley step thickness meter. The combination of spectral analysis and fractal di-
mension estimation is used for evaluation of surface roughness of barrier technical
textiles having various structures.

2. Surface profile characterization

Variation of thickness or surface roughness can be generally assumed as combination
of random fluctuations (uneven threads, spacing between yarns, non uniformity of
production etc.) and periodic fluctuations caused by the repeated patterns (twill,
cord, rib etc.) created by weft and warp yarns. For description of roughness R(d)
as thickness of fabric in places 0 < d < T (T is maximum investigated sample
length and M is number of places) the following group of characteristics have been
proposed:

• Characteristics based on the surface roughness [11],
• Basic statistical characteristics of R(d) [2],

Characteristics based on the measures of short range and long range dependencies
(as fractal dimension [6]).
Due to complexity of R(d) the fractal dimension often suitable as overall measure

of roughness. Especially for weaves it is necessary to identify periodic component
in R(d) as well. For this purpose the spectral analysis can be useful. The position of
repeated weave pattern can be estimated from variance spectrum (spectral density
function) S(d) estimated from periodogram. In this section the classical roughness
parameters are discussed. Fractal dimension characteristics are the main ones used
in this work.

2.1. Roughness parameters. Let R(dj) represents the measurements of thickness
at points d1, d2, . . . , dM . The measurement points dj are often selected as equidistant
and then R(dj) can be replaced by the variable Rj . For identification of positions
in length scale is sufficient to know sampling distance ds = dj − dj−1 = T/M for
j > 1. The standard roughness parameters used frequently in practice are [19]:

(i) Mean Absolute Deviation (MAD). This parameter is equal to the mean
absolute difference of surface heights from average value (Ra). For a surface profile
this is given by

(1) MAD =
1

M

∑

j

|Ri − Ra| .

This parameter is often useful for quality control. However, it does not distinguish
between profiles of different shapes. Its properties are known for the case when Rj ’s
are independent identically distributed (i.i.d.) random variables

(ii) Root Mean Square Value (RMS). This is given by

(2) RMS =

√

1

M

∑

j

(Ri − Ra)2 .

Its properties are known for the case when Rj ’s are independent identically distribu-
ted (i.i.d.) random variables. One advantage of RMS over MAD is that for normally
distributed data can be simple to derive confidence interval and to realize statistical
tests. RMS is always higher than MAD and for normal data is RMS= 1.25∗MAD. It
does not distinguish between profiles of different shapes as well. The parameter RMS
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is less suitable than MAD for monitoring certain surfaces having large deviations
(corresponding distribution has heavy tail).

(iii)Mean Height of Peaks (MP). This is calculated as the average of the profile
deviations above the reference value R (often is R = Ra). It is given as mean value
of peaks Pi, i = Np where

Pi = Ri − R for Ri − R > 0 and Pi = 0 elsewhere .

(iv) Mean Height of Valleys (MV). This is calculated as the average of the
profile deviations below the reference value R (often is R = Ra.). It is given as mean
value of valleys Vi, i = Nv where

Vi = R − Ri for Ri − R < 0 and Vi = 0 elsewhere .

The parameters MP and MV give information on the profile complexity. Exceptional
peaks or valleys are not considered but are useful in tribological applications.

(v) The Standard Deviation of Profile Slope (PS). This is given by

(3) PS =

√

√

√

√

1

M

∑

j

(

dR(x)

dx

)2

j

.

(vi) The Standard Deviation of Profile Curvature (CP). This quantity called
often as waviness is defined by the similar way

(4) PC =

√

√

√

√

1

M

∑

j

(

d2R(x)

dx2

)2

j

.

The slope and curvature are characteristics of a profile shape. The PS parameter is
useful in tribological applications. The lower the slope the smaller will be the friction
and wear. Also, the reflectance property of a surface increases in the case of small
PS or PD.

(vii) Mean Slope of the Profile (MS). This is given by

(5) MS =
1

M

∑

j

∣

∣

∣

∣

dR(x)

dx

∣

∣

∣

∣

j

.

Mean slope is an important parameter in several applications such as in the
estimation of sliding friction and in the study of the reflectance of light from surfaces.

(viii) Ten Point Average (TP). This characteristic is defined as the average diffe-
rence between the five highest peaks and five deepest valleys within a surface profile.
The parameter TP is sensitive to the presence of high peaks or deep scratches in the
surface and is preferred for quality control purposes.
These parameters are useful in the case of functional surfaces or for characterizing

surface bearing and fluid retention and other relevant properties. For the characteri-
zation of hand will be probably best to use waviness PC. The characteristics of slope
and curvature can be computed for the case fractal surfaces from spectral density
autocorrelation function or variogram.
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3. Spectral analysis

The primary tool for evaluation of periodicities is expressing of signal R(d) by the
Fourier series of sine and cosine wave

(6) R(d) =
a0
2
+

∑

k

(ak cos(π ∗ k ∗ d) + bk sin(2π ∗ k ∗ d)) .

Quantity d is often time or distance from origin and k = 1, 2, 3, 4 . . . . The first
two terms have period 1, the second two terms have period 1/2, the third two terms
have period 1/3 etc. One consequence of this is that the different pairs of terms are
orthogonal (integral of their product is zero). This fact facilitates fitting of Fourier
series to experimental data. The term a0/2 can be made zero by centralization (i.e.
subtracting of mean value). By using of Euler formula exp(ia) = cos(a) + i sin(a),
where i is imaginary unit the Fourier series may be written in the compact form

(7) R(d) =
∑

k

ck exp(−2π ∗ k ∗ d) .

The complex coefficients ck have real and imaginary part ak and ibk In Fourier se-
ries only the terms up to k =M/2 contain any useful information. After this bound
are real coefficients repeated symmetrically and imaginary coefficients repeated an-
tisymmetrically. The Fourier Transform is conversion of data from series according
to d to the series of frequencies ω = 2π ∗ k/(M ∗ T ) , for k = 1, 2, 3 . . .

(8) RF(ω) =
∑

R(d) ∗ exp(−i ∗ ω ∗ d) .

Function RF is symmetric about frequency ω = π/T . For discrete data the fast
Fourier Transform (FFT) leads to transformed complex vector DRF . Vector DRF
may be used for creation of power spectral density. S(ω)

(9) S(ω) = DRF ∗ conj(DRF)/T 2 = abs(DRF)2/T 2

where conj(·) denotes conjugate vector. The S(ω) is estimator of spectral density
function and contains values corresponding to contribution of each frequency to
the total variance of R(d). Frequency of global maxim on S(ω) is corresponding
to the length of repeated pattern and height corresponds to the nonuniformity of
this pattern. Spectral density function is therefore generally useful for evaluation of
hidden periodicities.
The estimation of the spectral density function S(ω) is relatively straightforward

in theory but in practice situation is more difficult since data are only available in
discrete samples of limited extent. For finite sample lengths if is necessary to use
windowing (avoiding leakage) de-trending (avoiding non stationarity of mean) and
filtration of parasite frequencies. Several methods of estimating the spectral density
function are available. More precise estimates can be obtained by using of sophisti-
cated procedures as averaged periodogram of overlapped windowed signals (Welch
method) or multiple signal classification (MUSIC). The maximum entropy spectral
analysis (MEM) provides smoother and higher resolution spectra for red-noise pro-
cesses, which therefore would appear to be more suitable for good estimation. The
method of MEM spectral estimation use of the Fourier transform between S(ω) and
the autocorrelation function [16]. It is necessary to specify before computation the
order of AR model. S(ω) is selected to maximize entropy such that the inverse Fou-
rier transform of S(ω) yields the autocorrelation function. These spectral estimators
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are available in Signal Processing toolbox of MATLAB system. For the white no-
ise (independent standard normal random numbers) are the estimators of spectral
density on the Fig. 1.

Fig. 1 Raw data (white noise) and estimators of power spectral density.

It is clear that the rough FFT based estimator shows the random fluctuations.
Both more sophisticated estimators show the one or more periodicities.
For simulation behavior of these estimators for periodic structure with added

random noise N(0, 1) the function

R(d) = 3 ∗ sin(2 ∗ π ∗ 10 ∗ t) + 4 ∗ sin(2 ∗ π ∗ 4 ∗ t) +N(0, 1)

was generated. The estimators of spectral density and raw data are given on the
Fig. 2.

Fig. 2 Spectral densities for periodic function with added whiter noise.

For very high level of noise N(0, 400) are these estimators non effective see Fig. 3.
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Fig. 3 Spectral estimators for data from Fig. 2 with high level of noise N(0, 400).

The spectral estimators for finite data length and corrupted by random errors
could be inaccurate. The more sophisticated procedures are very sensitive to the
tuning parameters. For estimation of fractal dimension is therefore the best way
to use simple FFT based method with proper data pretreatment (detrending, win-
dowing).

4. Statistical analysis

A basic statistical feature of R(d) is autocorrelation in distance. Autocorrelation
depends on the lag h (i.e. selected distances between places of thickness evaluation).
The main characteristics of autocorrelation is covariance function C(h)

(10) C(h) = cov(R(d), R(d + h)) = E(R(d) ∗ (R(d+ h)− E(R(d))))

and autocorrelation function ACF(h) defined as

(11) ACF =
C(h)

C(0)

ACF is one of main characteristics for detection of short and long-range dependencies
in time series. It could be used for preliminary inspection of data. The computation
of sample autocorrelation directly from definition is for large data tedious. The
technique of ACF creation based on the FFT (there is a known transformation
of ACF to S(ω) and back) is contained in Signal Processing toolbox of MATLAB
(procedure xcorr.m).
In spatial statistics is more frequent variogram, (called often as structure function)

which is defined as one half variance of differences (R(d)− R(d+ h))

(12) Γ(h) = 0.5 ∗ D[R(d)− R(d+ h)]

or

(13) Γ(h) = 0.5 ∗ [E(R(d)− R(d+ h))2 − (E(R(d) − R(d+ h)))2] .



56 Miroslav Brzezina, Jiří Militký

For stationary random process is mean value independent on lag h i.e. E(R(h)) = m
and then

(14) Γ(h) = 0.5 ∗ E(R(d)− R(d+ h))2 .

For random processes having stationarity of second order is valid

(15) C(h) = E[R(d) ∗ R(d) ∗ R(d+ h)]− m2 .

Variance is then equal

(16) D(R(d)) = C(h = 0) = C(0)

and variogram is directly related to covariance

(17) Γ(h) = C(0)− C(h)

The variogram is relatively simpler to calculate and assumes a weaker model
of statistical stationarity„ than the power spectrum. Several estimators have been
suggested for the variogram. The traditional estimator is

(18) G(h) =
1

2N(h)

N(h)
∑

j=1

(R(dj)− R(dj + h))2

where N(h) is the number of pairs of observations separated by lag h. Problems of
bias in this estimate when the stationarity hypothesis becomes locally invalid have
led to the proposal of more robust estimators. One such estimator has been created
by Cressie and Hawkins [14]. Another estimator has been suggested by Isaaks and
Srivastava [15]. This makes use of the estimated covariance function to obtain the
non-ergodic variogram, which is also referred to as the inverted covariance defined
as

(19) Gd(h) = D(R(d)) − 1

2N(h)

N(h)
∑

j=1

(R(dj)− md(h)) ∗ (R(dj + h)− md(−h))

where D(R(d)) is replaced by the sample variance, and are estimated lag means for
the head and tail of the data pairs vector. Both variogram and ACF can be used for
estimation of fractal dimension estimation.
For the white noise (independent standard normal random numbers) are the es-

timators of ACF, variogram and covariance function on the Fig. 4.
The same estimators are given for the case of periodic function with added white

noise (see Fig. 2) on the Fig. 5.
For very high level of noise N(0, 400) are periodicities hidden are not detected by

these estimators. This level of noise is not in practice result of measurement errors
but random fluctuations of surface profile.
It is can be summarized that simple statistical characteristics are able to iden-

tify the periodicities in data but the reconstruction of “clean” dependence is more
complicated. The variogram is often sufficient for characterization of surface profiles.
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Fig. 4 Estimators of autocorrelation function, variogram and covariance function for white

noise.

Fig. 5 The ACF, variogram and covariance function for periodic function with added white

noise.

5. Chaos dynamics

This approach is common for the time series, which can be assumed to be result of
dynamic process. Surface profiles are often results of deterministic process embedded
in noise (as surface of weaves). For some surfaces the deterministic chaos dynamic
can be accepted (formation of some types of nonwovens etc.) The key to modeling
is that even if the exact description of the dynamic system under study is unknown,
the state space can be reconstructed from a single scalar surface profile. When the
state space is reconstructed from a scalar data serie it is usual to call this state space
a phase space. The phase space is defined as the multidimensional space whose axes
consist of variables of a dynamic system. The dimension of the attractor will provide
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Fig. 6 ACF, variogram and covariance for periodic data embedded in high level noise

N(0, 400).

a measure of the minimum number of independent variables that describe the dy-
namic system.
The state space reconstruction is the basis for recovering the properties of the

original attractor from a scalar data series. Therefore, building a dynamic model
here involves reconstructing a phase space from the data.
A method of time delay coordinate has been suggested for this purpose. Ta-

kens [20] showed that an attractor, which is topologically equivalent to the scalar
time series, could be reconstructed from a dynamic system of n variables by using
the time-delay coordinates. Specifically, given scalar data series i = 1, . . . , M the
m dimensional signal Xi is composed of the scalar series Ri as follows:

Xi = Ri, Rii+τ , Ri+2τ , . . . , Ri+(m−1)τ .

The τ is an appropriate length delay and m is an embedding dimension. In the
process of constructing a well-behaved phase space an important question is how
to choose the delay (τ) and the embedding dimension (m). Usually, the procedure
of determining the embedding dimension m is to increase m and to estimate the
fractal dimension or the largest Lyapunov exponent for every embedding dimension
until the fractal dimension or the largest Lyapunov exponent remains almost con-
stant. The delay, τ is often chosen from the autocorrelation function of the original
time series as the delay τ at which the autocorrelation function attains the value
of 1/e. A justification for the above procedure in the deterministic case is given by
Takens theorem [20]. According of this theorem is m = 2D + 1 where D is the at-
tractor dimension (in the sense of Hausdorff dimension). In practice, D is unknown.
An estimate of the attractor dimension, D, may be obtained from the correlation
dimension.
A correlation dimension, which provides the number of active degrees of freedom

of the system, can be constructed in phase space as:

(20) d2 = lim
r→0

lim
M→∞

lnCm(r)

ln r

where
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(21) Cm(r) =
1

L(L − 1)

L
∑

i,j=1

H (r − ‖Xi − Xj‖) .

The H(u) is Heaviside step function (H(u) = 1, if u ≥ 0 and H(u) = 0 for u < 0),
‖Xi − Xj‖ is the norm computed between two vectors and L = M − (m − 1)π,
with M being the number of data points. The quantity Cm(r) for M → ∞ is called
the correlation integral. When the system dynamics is governed by a strange
attractor, it is possible to show that for a sufficiently small value of r

(22) Cm(r) ≈ rD(m) and lim
m→∞

D(m) = d2

Thus, if the value of d2 stabilizes at some value d∗2, as the embedding dimension
increases, then d∗2 is the estimated correlation dimension A minimal data length
required for good estimation of the dimension of the attractor is n > 10d∗2/2.
Correlation dimension is one of the techniques used in detecting the existence of

chaos. This technique has some limitations:

i The need for a large amount of scalar time series data.
ii The crucial influence of noise on its computation.
iii If the attractor has an integer correlation dimension, then it is not clear
whether the process is chaotic.

Thus, to detect the existence of chaos the correlation dimension should be comple-
mented by other techniques, such as the Kolmogorov K-entropy and the Lyapunov
exponent.
A useful quantity, which can be extracted from the correlation integral, is the

Kolmogorov K-entropy.

(23) K2 ≈ lim
m→∞

lim
r→0

Km
2 (r) where Km

2 (r) =
1

r
log

Cm(r)

cm+1(r)
.

If the value of Km
2 stabilizes at some value K2, as m increases, that K2 is the

entropy estimate. The K2 entropy measures the degree of chaos in a system:

• Regular or ordered systems are characterized by K2 = 0.
• Purely random systems are characterized by K → ∞.
• Chaotic (deterministic) systems are characterized by 0 < K < +∞.

Additional features that describe deterministic processes give Lyapunov expo-
nents. These exponents measure the exponential divergence or convergence of nearby
orbits. Points close together in phase-space are nearly identical states; points with
separating orbits become unaligned with each other. There are n Lyapunov expo-
nents in a given n-dimensional system, but we need to estimate only the largest one,
namely γmax, which is defined by

(24) γmax = lim
n→∞

1

nγ

n
∑

i=1

log ‖ε(γ ∗ i)‖

where ε(γi) is the difference of infinitesimal neighboring orbits on the attractor. If
the dimension of the attractor is not an integer, or if there is at least one positive
Lyapunov exponent, the system is said to be chaotic. However, by applying only the
largest positive Lyapunov exponent one cannot distinguish some nonlinear models
from chaotic models. In addition, the finiteness of the correlation and the information
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dimension as well as the largest positive Lyapunov exponent do not imply that one
can definitely distinguish between a random process and a chaotic deterministic
process. it should be recognized that these invariants are not statistical tests.
One test of particular interest here is the theorem by Brock on the dynamic

properties of the residuals from the best fitting data series model. Brock showed
that if data series are chaotic, the estimated correlation dimension and the largest
Lyapunov exponent of residuals from the best fitting time series model are the same
as that of the original data. The test statistic is given by

(25) W =
√

L ∗
[

Cm(r) − (C1(r))2
]

/σm(r)

where Cm(r) and C1(r) are given in Eq. (20) and σm(γ) is an estimate of the stan-
dard deviation. Under the null hypothesis of an independent identical distribution
(white noise), the W statistic converges as M → ∞ to a standard normal variable
with mean zero and variance one. A large value of W is evidence of a non-linear
model and W value of 0 indicates a stochastic process. Based on Monte Carlo re-
sults, it can be suggested that the W statistic could detect other types of departures
from i.i.d. such as non-linearity, non-stationarity and deterministic chaos. Therefore,
rejection of i.i.d. does not imply chaos. The null hypothesis of i.i.d. may be rejected
because of linear or non-linear dependence or chaotic structure.

6. Surface profiles inspection

Given a surface profile, the selection of the appropriate approach for its analysis is
not a trivial task because the mathematical background of the underlying process
is unknown. Moreover, the surface profiles are corrupted by noise and consist of
finite number of sample values. Many surface profiles from real nature recorded
precisely enough have similar properties, and thus the task for their description
could be generalized in standard procedures. The task to analyze real data is often
to resolve the so-called inverse problem, i.e., given a surface profile, how to discover
the characteristics of the underlying process
Three approaches are mainly applied: one based on random stationary processes,

the second based on the self affine processes with multiscale nature and the third
based on the theory of non-linear deterministic systems (chaotic dynamics). The
majority of the important results in processing and analysis of surface profiles have
been obtained considering the signals consisting of multiperiodic components mixed
with random noise.
The problem becomes more complicated if one wishes to determine whether the

surface profile under study is governed by stochastic or chaotic process (as a whole),
as the surface profile change their structure and dynamics over time. Hence, methods
for tracking the dynamic behavior should suit better.
Before choosing the approach, some preliminary analysis is needed mainly to test

the signals for non-stationarity and non-linearity. This is important as some kind
of stochastic processes with power-law shape (self affine surfaces) of their spectrum
may erroneously be classified as chaotic processes on the basis of some properties of
their non-linear characteristics, e.g., correlation dimension and Kolmogorov entropy.
In this sense, the tests for non-stationarity and non-linearity may be regarded as
a necessary preprocessing in order to choose an appropriate approach for further
analysis.
Prior to selecting any method for data analysis, some simple tests are useful to

apply on the data surface profile [18]. The first one may be to observe the amplitude
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distribution. In most of the methods for data processing based on stochastic models,
gaussian distribution is assumed. If the distribution is proved to be non-gaussian
(according to some test or inspection), there are three possibilities:

(1) the process i s linear but non-gaussian;
(2) the process has linear dynamics, but the observations are as a result of non-
linear “static” transformation (e.g. square root of the current values) [18];

(3) the process has non-linear dynamics.

It is suitable to construct the amplitude R(di) histograms for the first and second
half of data separately and inspect non-gaussianity or asymmetry of distribution.
The second test is based on inspection of the shape of the autocorrelation function

(ACF). In case of a proper selection of Nyquist sampling frequency, the slow decrease
of ACF for large lags indicates long-range correlation, which may be due to non-
stationarity and/or dynamic non-linearity [17]. In case of non-stationarity due to
additive (e.g. trend-like) components, they could be removed in order to test the
ACF on the residuals. If the shape ACF remains the same, this is a typical case of
1/ωβ noise (0 < β2), which suggests fractal dynamics. If β > 1, the process is like
Brown noise and possesses intrinsic non-stationarity. The mean and variance are not
defined as they depend on the time scale, and there is no sense in collecting more
data samples.
The presence of non-linearity may be tested by the comparison of the shape of

square of ACF with that of ACF of squares of samples. If ACF(R2i ) > (ACF(Ri))
2,

non-linear process is suggested. More sophisticated tests are given in [18].

7. Nature of surface profiles

Most of man made objects are geometrically simple and can be classified as composi-
tion of regular geometric shapes as lines, curves, planes, circles, spheres etc. Some
objects are not be approximated precisely by the regular geometric shapes. One ca-
tegory of these objects is called fractals. Benoit Mandelbrot has coined term fractal
in the seventies. (From Latin fractus, meaning irregular or fragmented.) Fractals
have two interesting characteristics. First of all, fractals are self-similar on multiple
scales, in that a small portion of a fractal will often look similar to whole object.
Second, fractals have a fractional dimension, as opposite to integer dimension of
regular geometrical objects. Because fractals are self similar they are constructed
by recursion. For geometrical fractals is the recursion explicitly visible. Typical
example is so called Koch curve shown on Fig. 7.
The interesting facet of the Koch curve is its length LK. In the n-th step is length

of segment equal to LS= 1/3n and the curve consists of 4n segments. Therefore it is
LK= (4/3)n.
For stochastic fractals or random fractals the recursion is more little subtle

and may be an artifact of an underlying fractal building process that occurs on
multiple spatial scales. The typical generating function is Weistrass Mandelbrot
equation, which satisfies to the self-affinity requirement (replaces of self similarity
for case of functions). The height R(d) of surface in the point d i.e. surface profile is
equal to

(26) R(d) = GD−1
∞
∑

i=n1

cos(2πgid)

gi∗(2−D)
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Fig. 7 Koch curve (in each step of construction the middle portion of each segment is

removed and replaced by two new line segments. First step is line, having length 1).

where 1 < D < 2 is fractal dimension, G is characteristic length scale of surface
and gi determines the frequency spectrum of surface roughness. The suitable va-
lue of this parameter is g = 1.5. The simulated stochastic fractals generated by
eqn. (26) for D = 0.75 and D = 0.75 are shown on Fig. 8. On the same figures are
power spectral densities in log-log scale, variograms in log-log scale and amplitude
histogram. The practically perfect linearity of log vartiograms and scattered linea-
rity of log power spectral densities are typical for self-affine curves. Histograms of
amplitudes Ri indicate multimodality or skewed distribution.
These curves correspond to the nonstationary random process and describe fracti-

onal Brownian motion fB. The lowest frequency is then related to the sample length L
according to relation gnl = 1/L.
The evaluation of D and G from random fractals is based on the power spectral

density P (ω) function, which has for eqn. (26) the power law form

(27) P (ω) = C ∗ ω−β where C =
G2(D−1)

2ln(g)
and B = 5− 2D for l/L ≤ ω ≤ ∞ .

The same power law behavior (differences are in the sign of power) is valid for
variogram.
The power law form is typical feature of fractals.
In some cases are fractals stationary random processes like fractional Gaussian

noise fG. The stationary fG process can be simply obtained as successive differences
of fB process. Stationary fG process corresponding to fB from Fig. 8. is shown on
the Fig. 9.
Fractals in the form of fG are fully characterized by fractal dimension D and

variance σ2.
A lot of engineering surfaces obey fractal like behavior for high frequencies. For

small frequencies the log-log power spectral density exhibits nearly constant portion.
The Markov type models can express this behavior. Simplest one has form

(28) Ri−1 = r ∗ Ri + (1− r) ∗ σ ∗ N(0, 1)

where r is autocorrelation coefficient. This type of profile is shown on the Fig. 10.
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Fig. 8 Stochastic fractals generated by eqn. (26) for D = 0.25 and D = 0.75.

Fig. 9 Fractional Gauss noise corresponding to first difference of the fractional Brownian

motion from Fig. 8.
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Fig. 10 Markov type surface profile generated by the eqn (28).

It is evident that the linearity for small lengths (corresponds to the high frequen-
cies) is still very high for log-log variogram. Based on these and previous simulations
we can conclude that:

• Power spectral density of Gauss noise has a lot of local extremes. Variogram
has random fluctuations in small scale.

• Power spectral density of composite sine waves embedded in high-level noise
exhibit no right pattern. The same is valid for variogram.

• Power spectral density of fractal type (fBm) surface profiles exhibits scatte-
red linear trend according to the theory. The variogram exhibits more strict
linearity with relative small scatter. Variogram is here typical power function
of h.

• Fractional Gaussian surface profiles are typical by random fluctuations of
variogram and symmetrical shape of amplitudes histogram.

• Markov like surface profiles have linear portion on variogram at smaller lags
h. For higher lags the plateau is visible.

The very simply calculated variogram can replace the spectral power density. Only
for periodic surface profiles with small noise level enables power spectral density the
identification of periodicities.

8. Estimation of the fractal dimension

A convenient way of characterizing the smoothness of an isotropic surfaces is Hausdorf
or fractal dimension. If the surface is very smooth is fractal dimension equal to
Dp = 2. For extremely rough surfaces is fractal dimension approaching to limit
value Dp = 3. General definition of fractal dimension is based on the capacity prin-
ciple [12] In measurement of surface profile (thickness variation R(h)) the data are
available through one dimensional line transect surface. Such data represents curve
in plane. Two dimensional fractal dimension D is then number between 1 (for smo-
oth curve) and 2 (for rough curve). If a surface may be modeled by a stationary,
isotropic Gaussian field then the relation
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(29) Dp = D + 1 .

The expected variance of the increment of Brownian motion can be expressed
using a value of the Hurst exponent H , where H = 0.5 [17]

(30) E(R(d)− R(d+ h))2 ≈ |h|2H .

For fractional Brownian motion is H in the interval (0, 1). Where H = 0 this
denotes a surface of extreme irregularity and H = 1 denotes a smooth surface.
Exponents H and fractal dimension D are in fact related

(31) D = Dγ + 1− H

where Dγ is the topological dimension such that D is in interval (2, 3) for a surface
and (1, 2) for a cut across a surface. Note that fractional Brownian motion can be
expressed in terms of a power law variogram

(32) Γ(h) ≈ c|h|H

where c is a constant. Similarly, for S(d) is valid

(33) S(d) = c1 ∗ |d|−(1+2H)

where exponent (1+2H) lies in the interval (1, 3). Fractal dimension is conventionally
obtained through estimating the parameter from a LSE linear regression of the log-
log transformation of Equations (32) and (33). The same results can be obtained
assuming that thickness variationR(d) is stationary Gaussian process and covariance
function C(h) is sufficiently smooth [12,13]. The behavior of this function near the
origin can be described by power type model

(34) C(0)− C(h) ≈ x|h|α .

Another possibility is to use spectral density

(35) S(ω) =
1

2π

∞
∫

−∞

C(h) ∗ cos(ω ∗ t)dt .

In a neighborhood of infinity is spectral density expressed as power function

(36) S(ω) = c1 ∗ |ω|−(α+1) .
Constant c1 is dependent on the c and α only. Fractal dimension is then equal to

(37) D = 2− 0.5∗α .

This formula may also be verified for another processes related to Gaussian one.
In general it is D computed from this relation denoted as effective fractal dimension.
There are several problems with estimating fractal dimension in this fashion. First,

elevation points, points on the variogram and the error term in the LSE regression
are likely to be autocorrelated. Second, data points in log-log space are unequally
spaced and, third, decisions concerning an acceptable cutoff for goodness of fit (R2)
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of the linear function are of an arbitrary a priori nature. Since the aim of the line
fitting exercise in estimating fractal dimension is the description of the relationship
rather than prediction, the bias introduced by the first problem is not critical. A
solution to the second is to re-sample the data using a geometric progression, but
at a cost of a dramatic reduction in the number of points used in the line fitting
exercise. An alternative to the third is to estimate the standard error SE around
the slope of a regression line. Based on these equations the program FRACT1 in
MATLAB for estimation of fractal dimension from variogram and power spectral
density has been constructed. Based on the preliminary testing the results of com-
putation from variogram were more stable and reliable. From power spectral density
the d corresponding to the global maximum of S(d) can be evaluated as well

9. Experimental part

Typical weave for barrier (heat resistant) textiles has been selected. Pattern is Satin
- warp 100% cotton, weft cotton/PET 65/35. Finishing Texaflam PSE/FRE.
The thickness variation curve R(d) (M = 450 points) was evaluated by step

thickness meter Shirley. The measuring plate has been replaced by the narrow blade.
Frequency of sampling was 10 [1/min] and compression load was 2500 Pa. Main
characteristics and fractal dimensions are summarized in the Table 1. Computations
were realized by program FRAC1 in MATLAB.

Sample I Satin
Mean [mm] 0.804
Variation coefficient [%] 2.41
Fractal dimension variogram – full data 1.552
Fractal dimension variogram – initial data 1.598
Fractal dimension power spectrum – full data 1.6024
Fractal dimension power spectrum – final data 1.585
Mean surface height Ra 0.8042
MAD 0.0167
RMS 0.0192
d for extreme on power spectrum 3

Tab. 1 Basic characteristics for R(d).

Thickness variation R(d), log-log power spectral density and variogram and his-
togram of amplitudes are shown on Fig. 11.
The comparison of ACF(R − Ra)

2 and ACF((R − Ra)
2) for satin is given on

Fig. 12.
There is detected of the some kind of no linearity.

10. Discussion

The characterization of thickness variation by combination of variogram and fractal
dimension enables to characterize complex surface profiles. From table 1 and results
from other tested fabrics the following conclusion can be created:

• Fractal dimension is not directly proportional to overall variability charac-
terized by RMS or MAD.

• Fractal dimension characterize mainly the complexity of thickness variation.



Complex characterization of textiles surface profile 67

• Values of maximum on the power spectral density d approximately agree
with the dimensions of weave unit.

• Variation of fractal dimension computed form variograms enables classifi-
cation of weaves.

Fig. 11 Thickness variation for sample I (satin).

Fig. 12 Comparison of ACF(R)2 and ACF(R2) – centered data for satin.

11. Conclusion

The application of variogram and power spectral density for evaluation of fractal
dimension and characterization of periodic fluctuations of weave thickness has been
shown. These characteristics can be used for deeper investigation of results from
SHIRLEY step thickness meter. For more precise analysis should be estimator of
power spectral density replaced by the more robust one or data should be properly
filtered.
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