
ROBUST’2000, 357 – 367 ©c JČMF 2001

STATISTICAL MODELS AND ANALYSIS OF CUMULATED
DAMAGE PROCESSES

PETR VOLF

Abstract. The contribution deals with a stochastic process which cumulates
random increments at random moments. It is described by the intensity of
random (counting) process of these moments and by a distribution of incre-
ments. The resulting process is here called the cumulative process. We derive
its martingale - compensator decomposition and then we propose the estima-
tor of characteristics of distribution of increments. An application deals with
the process of growing damage of a technical device leading to a break of de-
vice when the cumulated damage exceeds a certain level. We also discuss the
problem of prediction of the cumulative process behaviour.
V článku se zabýváme procesem kumuluj́ıćım náhodné př́ır̊ustky v časech daných
náhodným bodovým procesem. Uvažujeme poměrně obecný model s martin-
galovou strukturou “inovace” procesu, tj. proces rozložitelný na martingal a
kompenzátor adaptovaný na př́ıslušnou filtraci. Uvažujeme model jako regresńı
a zabýváme se odhadem intenzity bodového procesu a charakteristik rozděleńı
př́ır̊ustk̊u. Je také zkoumán problém predikce chováńı procesu. Jako aplikaci
analyzujeme proces r̊ustu poškozeńı výrobku či materiálu.
Rez�m�: V stat~e rassmotreny sluqa�nye toqeqnye i kumulativnye

processy { sluqa�nye summy. Pokazano razlo�enie processa v mar-

tingal i kompenzator. Dalee predstavleny ocen~ki intensivnosti i

harakteristik priraweni�, obsu�daets� vopros predskazani� pove-

deni� processa. V kaqestve primera issledovany processy nako-

pleni� povre�deni�, kotorye vli��t na vero�tnost~ otkaza tehniq-

eskogo produkta.

1. The model of cumulative process

The counting process is a stochastic point process registering random events and
counting their number. The trajectory of such a process starts at zero and has jumps
+1 at random moments of events. The main characteristic is the intensity of the
stream of events. A review of theory and applications of counting process models is
given, for instance, in Andersen et al (1993), or Fleming and Harrington (1991).

In the present paper, we consider random process

(1) C(t) =
∫ t

0

Y (s) dN(s), ( C(0) = 0 ),

where N(t) is a counting process and Y (t) is a set of random variables. Such a
process combining the counting process with the process of random increments is
called the compound counting process, or sometimes also the cumulative process
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(Volf, 2000). Its model is suitable for the description of many real-world techno-
logical, environmental, biological and also financial processes (especially in the field
of insurance, cf. Embrechts et al, 1997, Rolski et al, 1999). The objective of the
present paper is to describe the process (1) with the aid of characteristics of both its
components, i. e. the hazard function of N(t) and the distribution of Y (t), and to
apply it to the modeling of growing damage of a technical device. We also discuss
the problem of prediction of the cumulative process behaviour.

In the scenario considered in Volf (2000) it was assumed that each Y (t) was
independent of the history of the process C(s) up to t (on the other hand, the
intensity of N(t) could depend on the history). It is a rather strong condition which
in some cases is not fulfilled, though we can imagine a number of examples for which
such an independence of increments on the history is a quite realistic property.

In the present paper we propose a model allowing for the dependence of distri-
bution of Y (t) on S(t−), where S(t) is a corresponding filtration, i.e. a nondecreas-
ing sequence of σ-algebras defined on the sample space of {N(s), J(s),Z(s), Y (s),
0 ≤ s ≤ t}, so that S(t−) is its left-continuous version, a ’history’. Intensity of N(t)
is λ(t) = h(t, Z(t))J(t), cumulative intensity L(t) =

∫ t

0 λ(s)ds, h(t, z) is a hazard
function, J(t) and Z(t) are S(t−) measurable predictable processes, e.g. an indica-
tor of observability of C(t) (J(t) = 1 if C(t) is observed, J(t) = 0 otherwise), and
a covariate process. It is assumed that they are left-continuous, while the processes
C(t) and N(t) are right-continuous.

As regards the distribution of random variables Y (t), we assume that the con-
ditional distribution of Y (t), given S(t−), can be described via a density function
f(y; t,Z(t)), and it possesses the first and second conditional momentsE(Y (t)|S(t−))
= µ(t,Z(t)), var(Y (t)|S(t−)) = σ2(t,Z(t)). These definitions imply that the pro-
cesses N(t), C(t) depend on S(t−) through Z(t) and J(t).

The processes are followed throughout a time interval [0, T ], the covariate can be
multidimensional and its values are from a set Z ∈ RK , say. For the sake of better
estimability, let us assume that functions h, µ, σ are bounded and continuous. By
the way, if h(t, z) is a bounded function, it follows that the probability of two events
at one moment is zero, which is one of basic assumptions of the event-history models
based on continuous–time counting processes.

A similar case, with parametrized function µ, has been studied in Scheike (1994),
with the focus on estimation of the parameter, and, eventually, on a kernel estimation
of both µ, σ in a nonparametrized scheme (cf. Orsáková in the present volume, and
references in Scheike, 1994). Our objective is to derive the estimator of the rate of
the cumulative process and of the characteristics of random increments. Then the
model will be applied to the description of processes of growing damage, with an
numerical example and with an attempt to predict the future behaviour of process.

1.1. The compensator of cumulative process. Let us now recall the compen-
sator – martingale decomposition of the counting process, namely N(t) = L(t) +
M(t), M(t) being the martingale adapted to σ-algebras S(t), with variance pro-
cess L(t) (cf. for instance Andersen et al 1993). Notice also that under our as-
sumptions, Y (t) is conditionally independent, given S(t−), of dM(t), where by
dM(t) we denote the increment of M(t) in a small interval [t, t + dt). Similarly,
by d〈M〉(t) = var{dM(t)|S(t−)} we mean the increment of the variance process of
M(t), which we denote by 〈M〉(t). This martingale innovation structure is crucial for



Statistical models and analysis of cumulated damage processes 359

the theory and methods of statistical inference, namely for the consistency and as-
ymptotic normality of estimates. That is why we search for a similar decomposition
of the cumulative process, too.

Let us denote Y ∗(t) = Y (t) − µ(t,Z(t)), so that E(Y ∗(t)|S(t−)) = 0. Then we
can write

C(t) =
∫ t

0

(Y ∗(s) + µ(s,Z(s))) dN(s) =
∫ t

0

µ(s,Z(s)) dL(s) +M(t),

where

M(t) = M1(t) +M2(t) =
∫ t

0

Y ∗(s) dN(s) +
∫ t

0

µ(s,Z(s)) dM(s).

Proposition 1. The processes M(t), M1(t), M2(t) are martingales adapted to σ-
algebras S(t), the variance process of M(t) is

〈M〉(t) =
∫ t

0

(σ2(s,Z(s)) + µ2(s,Z(s))) dL(s).

The proposition is proved in Volf (2000).
Corollary. Process

∫ t

0
µ(s,Z(s)) dL(s) is the compensator of process C(t).

Evidently, process
∫ t

0 µ(s,Z(s)) dL(s) is S(t−)-measurable and predictable (the
paths are continuous).

2. Large sample properties

Let n realizations Ci(t) =
∫ t

0 Yi(s) dNi(s) of process C(t), together with cor-
responding processes Ji(t),Zi(t), be observed in an interval of the interest, [0, T ].
More precisely, we observe the paths of processes Ji(t),Zi(t), and, provided J(t) = 1,
the moments of events Tij of counting processes Ni(t) and increments Yi(Tij) (for
i = 1, . . . , n, j = 1, . . . , ni = Ni(T )). It is assumed that random variables Yi(t), i =
1, 2, ..., n have the same conditional probability densities f(y; t,z) and that Ni(t)
are characterized by the same hazard function h(t, z). Now the common filtration
S(t) is constructed above all paths of {Ci(s), Ni(s), Ji(s),Zi(s), s ≤ t, i = 1, 2, ..., n}.
Counting processes Ni(t) have intensities λi(t) = h(t)Ji(t), by Li(t) =

∫ t

0 λi(s)ds we
denote the cumulative intensity processes, Mi(t) = Ni(t) − Li(t) are martingales.
As we assumed the boundedness of h(t, z), and also processes Ji(t) are bounded,
than the probability of two increments at one moment is zero and the martingales
are mutually orthogonal, i.e. d〈Mi,Mj〉(t) = 0 for i �= j. The same holds for
Mi(t), the martingales defined in the same way as M(t) in the preceding section,
i.e. d〈Mi,Mj〉(t) = 0 for i �= j. Actually, from this impossibility of simultaneous
events it also follows that the increments of Ci(t) are conditionally orthogonal, given
the history of the process.

From the conditional independence of innovation of the processes the multiplica-
tive form of the likelihood process follows (it is actually a generalization of the
likelihood function of Poisson process):

L =
n∏

i=1

ni∏
j=1

{λi(Tij)f(Yi(Tij);Tij ,Zi(Tij))} · exp
{
−

∫ T

0

λi(t) dt

}
,

where λi(t) = h(t,Zi(t))Ji(t). Consequently, the part containing the intensities and
the part containing the distribution of Y ’s are separated (and therefore both char-
acteristics can be estimated independently). In the case of parametrized function f ,
its parameters can be estimated from the maximum likelihood estimation procedure
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based on L(f) =
∏n

i=1

∏ni

j=1 f(Yi(Tij);Tij ,Zi(Tij)) only. In a nonparametrized case,
estimates of functions µ(t, z), σ2(t, z) can be obtained with the help of the smooth-
ing (kernel) technique. Even the density f(y; t, z) could be then estimated via the
kernel method.

2.1. Estimates and their convergence. Let us first recall several results from
Volf (2000), where the influence of covariates was not considered. In such a case,
the most common estimator of the cumulative hazard function H(t) =

∫ t

0
h(s)ds is

the Nelson-Aalen one:

Ĥn(t) =
n∑

i=1

∫ t

0

1[J(s) > 0]
J(s)

dNi(s) =
∫ t

0

1[J(s) > 0]
J(s)

dN(s), (2)

where J(s) =
∑n

i=1 Ji(s), N(s) =
∑n

i=1 Ni(s) (and we put 0/0 = 0 when J(s) = 0).
It is well known that such an estimator is uniformly consistent and asymptotically
normal (in the sense of the weak convergence of normalized residual process to a
Wiener process) on [0, T ], provided J(s) tends to infinity uniformly in the whole
interval. Let us assume even a stronger condition:
A1. There exists the limit r(s) = limn→∞

J(s)
n in probability such that

a) the limit is uniform on [0, T ],
b) r(s) ≥ e on [0, T ], for some e > 0.
As an analogy to (2), let us now define the following ”averaged” processes:

C̄n(t) =
n∑

i=1

∫ t

0

1[J(s) > 0]Yi(s)
J(s)

dNi(s), K̄(t) =
∫ t

0

µ(s))
r(s)

dH(s),

where function K̄(t) actually represents an averaged rate of the development of
the process C(t). Under assumption A1, the following large sample results can be
proven:
Proposition 2. C̄n(t) is a uniformly consistent estimate of K̄(t) on [0, T ], i.e.
limn→∞ supt∈[0,T ] |C̄n(t)− K̄(t)| = 0 in probability.

If a proper version of Lyapunov condition is added, for instance that uniformly
bounded E{|Y (t)|3} exists, asymptotic normality can be shown, too:
Proposition 3. The process

√
n(C̄n(t)− K̄(t)) converges weakly on [0, T ] to a contin-

uous Gaussian process with zero mean and independent increments, which has the
variance function w(t) =

∫ t

0
(µ2(s)+σ2(s))

r2(s) dH(s).

On the basis of this convergence, the statistical tests, both of the goodness-of-
fit and of homogeneity, were derived in Volf (2000). They used, similarly as the
Kolmogorov-Smirnov type tests, the crossing probability results of Brownian mo-
tion and Brownian bridge processes. An application to the analysis of sequences
of financial transactions, with particular attention to detection of atypical (possibly
’fraud’) set of transactions, was suggested.

Let us now return to the more complex setting with regression on covariates
(processes) Z(t). Then the average from n cumulative processes is

Cn(t) =
∑

i

∫ t

0

ϕi(s)
J(s)

dNi(s) =
∑

i

∫ t

0

{
µ(s, Zi(s))

J(s)
dLi(s) +

dMi(s)
J(s)

,

}
where the first part (a compensator) characterizes again an average (random) rate
of growth of the process, while the second part tends to zero. It is possible to
formulate a set of ’stability’ assumptions, for instance requiring existence of limits
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µ̄(t) = limn→∞
1
n

∑n
i=1 µ(t,Zi(t))Ji(t), such that certain variants of Propositions 2

and 3 hold. However, the meaning of µ̄(t) is then rather vague.

2.2. Estimation of process’ characteristics. Another and more practical prob-
lem is the estimation of moments (and density function, say) of distribution of
Y (t) provided Z(t) = z. First, the distribution of the design of random points
(Tij , Zi(Tij)), i = 1, . . . , n, j = 1, . . . , ni, should be estimated, then it will be used
in the kernel estimation of “regression functions” µ(t, z), σ2(t, z).

The basic results from the field of kernel estimation of density function and of
regression function are summarized elsewhere, also in ’Robust’ papers of Antoch
(1982, 1986), Michálek (1994). Let us consider the simplest versions of estimates
and their consistency at a given point (t, z) (and the case with random design of
points (Tij , Zi(Tij)). Let W1(u) and W2(w) be two kernel functions. At point (t, z)
let us define

ϕ̂(t, z) =
1

d1d2N(T )

n∑
i=1

∫ T

0

W1

(
t− s

d1

)
W2

(
z − Zi(s)

d2

)
dNi(s),

where

N(T ) =
n∑

i=1

∫ T

0

dNi(t).

Further, assume that d1 and d2 → 0, while d1d2N(T ) → ∞ when n → ∞. Actually,
points (Ti, Zi(Ti)) are not i.i.d. variables, nevertheless, we just assume the following:
A2: ϕ̂(t, z) converges (at given (t,z)) to a value ϕ(t, z) > 0, in probability,

where ϕ(t, z) taken as a function on [0, T ]× Z means a density of marginal dis-
tribution of one (observed) point (t, Z(t)) for a set of processes Z(t), J(t).

Let us define the following estimator at point (t, z):

µ̂(t, z) =
1

ϕ̂(t, z)d1d2N(T )

n∑
i=1

∫ T

0

Yi(t)W1

(
t− s

d1

)
W2

(
z − Zi(s)

d2

)
dNi(s),

if ϕ̂(t, z) > 0, µ̂(t, z) = 0 otherwise. It is a kernel estimator of regression function
E Y (t), given t and z and given the fact that t is a point of corresponding point
process N(s). Notice, that the probability of the realization of point t depends on
Z(t−). Continuity of µ at point (t, z), together with A2, suffice for the P -consistency
of µ̂(t, z). The same holds for the estimate of µ2(t, z) = E(Y 2(t)|Z(t) = z) (at point
(t, z)), which is

µ̂2(t, z) =
1

ϕ̂(t, z)d1d2N(T )

n∑
i=1

∫ T

0

Y 2
i (t)W1

(
t− s

d1

)
W2

(
z − Zi(s)

d2

)
dNi(s),

and, hence, also for σ̂2(t, z) = µ̂2(t, z)− (µ̂(t, z))2.

3. Damage processes

In many situations, the lifetime of an object is affected by a process of growing
damage. We can, for instance, imagine the process of wear, corrosion, growth of
cracks, in the field of technical products reliability. Similar processes cumulating a
certain important quantity influencing the risk of a crucial event can be encountered
in many other fields (e. g. chemistry, environmental processes, biological and even
medical studies). One of models used for the description of such a “damage process”
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is based on a trend function and the Wiener process describing the uncertainty, for
instance

D(t) = g(t) + σW (t).

The second class of models are the random sums, i. e. the point processes with
random increments, cumulative processes C(t). In both cases, it is assumed that
there exists an upper bound B, the lifetime ends when the damage process exceeds
the bound. Quite naturally, B may be a random variable, in certain instances it is
not observed directly but with censoring (it will also be the case of our example).
The damage modeled via C(t) increases at discrete time moments, therefore these
models are sometimes called the shock models. Their investigation can lead to a
deeper understanding to reasons of failures, compared to a mere analysis of lifetime
distribution.

In the present paper it is assumed that the most of processes are observed fully
(for instance like in assumption A1), though a certain censoring is allowed. Kahle
and Wendt (2000) consider also the cases when the damage processes are observed
in random moments when the actual level of process is registered (the scheme of
random inspections). Then, without any assumption that the number of processes
observed at each small interval ∆t tends to infinity, the nonparametric inference is
not reliable. Nevertheless, the parametric model evaluation is still possible, with
consistent results. However, Kahle and Wendth do not consider the influence of
covariates, which, again, should be observed, or at least reliably predicted.

In the next example, the regression is described via the Cox’s model. Its general
form assumes that the hazard function can be decomposed to two factors, h(t, z) =
h0(t)·h1(z), the most common form then uses h1(z) = exp(βz). Cumulative baseline
hazard function H0(t) =

∫ t

0
h0(s) ds is then estimated as

Ĥ0(t) =
n∑

i=1

∫ t

0

dNi(s)∑n
j=1 exp(βZj(s))Jj(s)

,

while parameter β is obtained by (iterative) maximization of log partial likelihood

logLp =
n∑

i=1

∫ T

0

log(
exp(βZi(t))∑n

j=1 exp(βZj(t))Jj(t)
) dNi(t).

Consistency and asymptotic normality are guaranteed by the conditions of stability
(the more complex variants of our A1) and by a version of Lindeberg condition –
see Andersen and Gill (1982), Andersen et al (1993).

3.1. Example. As an artificial example with simulated data, let us consider a point
process with events – failures of a car. Failures are repaired, the quantized seriousness
of failure is cumulated to the cumulative process, until, finally, a non-repairable
failure occurs and the lifetime of the car ends. Figure 1 a) and b) shows the processes
observed for 40 cars. The reference time was the age of car, the maximal survival
was about 20 years while the mean survival was 17,4052. The cars were of different
year production, from new ones to cars produced 25 years ago. Figure 1 c) shows the
development of the risk set, i. e. the number of cars of corresponding age remaining
in the study. Several (11) trajectories of N(t) and C(t) end by a dot – it means that
the lifetime of card ended by a non-repairable failure, while the other cars were still
in use at the time of data collection. The values of Ci(t) at these dots represent the
distribution of upper bound B, they actually approximate the bound from below,
the “right” values of the bound are censored. Nevertheless, we took the average of
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Figure 1. Observed processes Ni(t), Ci(t) and process J(t)
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these values (B = 30.6130) as a maximal damage limit used in the prediction of the
fate of cars, e. g. in Figure 4.
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In observed data, together 256 failures were registered. The distribution of incre-
ments is displayed in Figure 2, as a histogram and kernel-estimated density, together
with the best fitted Weibull distribution. Average increment was 1.8392, estimated
standard deviation 1.5039. Naturally, it was expected that both the distribution of
increments Y (t) and the intensity of point process N(t) depended on the time and
on covariates. Two covariates were considered, namely Z1 – the year of production
(Z1 = 1 for 25 years old cars, Z1 = 25 for new cars) and Z2(t) characterizing the
conditions of car’s usage, Z2(t) = 0 if conditions and service was good, Z2(t) = 1 if
conditions were hard and/or service was bad. The dependence on these covariates
was analyzed in standard Cox’s regression model. Estimated parameters, with corre-
sponding asymptotic 95% confidence intervals, were β1 = −0.0124 (−0.0405, 0.0156)
and β2 = 0.8306 (0.5959, 1.0664), i. e. the second covariate was statistically signif-
icant. Figure 3 shows kernel estimates of means and standard deviations of incre-
ments, as functions of time, separately for Z2 = 0 and 1 (Z1 was not taken into
account).

On the basis of these results, and for given process Z2(t), we are able to character-
ize (at least roughly) both components of damage process, the intensity of random
point process of events and the distribution of increments – the latter for instance
by Weibull distribution with means and variances depending on t and Z2 (as in
Figure 3), dependence on Z1 being neglected. Then, we are also able to generate
the trajectories of such a damage process and to predict the fate of a car. Figure 4
shows one randomly generated (predicted) trajectory of N(t) and C(t), for a new
car and Z2(t) ≡ 1, and also for 5 year old car (with actual C(5) = 3) and under
assumption that Z2(t) will be 0 through the rest of its lifetime. Dotted line shows
the upper limit of damage B. Naturally, one randomly generated trajectory is not a
reliable prediction. It is better to generate a large set of trajectories and to compute
from them the mean trajectory, quantile intervals and prediction bands. The next
section discusses such a problem.
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Figure 4. Predicted trajectories N(t), C(t) for two cars

4. The problem of prediction

The asymptotic normality shown in Proposition 3 yields actually the joint confi-
dence regions for the model functions (µ, σ, h), based on observed data, both on the
whole interval [0, T ] and at each fixed t, too. However, we are also interested, from
practical reasons, in α − prediction regions, i.e. the intervals (at fixed t) and the
regions, bands for all t ∈ [0, T ], in which the trajectory of processes N(t) or C(t) is
expected to lie with a given probability α.

For instance, insurance mathematics solves the problem of the ruin probability,
which is equivalent to the problem of construction of prediction bands. In that field,
mostly a simple case of compound Poisson process and the linear ’ruin band’ are
considered.

In the case considered here, the development of process depends on the devel-
opment of covariates. So that, for reliable prediction, we need estimates of process
characteristics and we also have to be able to predict relevant covariate process. Let
us assume that such a prediction z(t) is available, so that we can compute would-be
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cumulated intensity L(t) (assuming that J(t) ≡ 1, say). Then, as regards the pre-
diction of the counting process trajectories, the connection with Poisson process can
be utilized:

α-prediction intervals for Poisson process are derived directly from α-quantiles of
Poisson distribution. Intervals for counting process, conditionally for given intensity
process, are obtained by a time transformation from the Poisson intervals. This
transformation is possible due the continuous growth of cumulative intensity. Let
Ti be times of events of a counting process with cumulated intensity L(t). Then
τi = L(Ti) are times of Poisson process with intensity 1.

Practical α-prediction band for counting process can be selected as the curve
joining the end points of α∗-prediction intervals, for a conveniently chosen α∗ > α.
Proper α∗ is obtained empirically, from analyzed or simulated data.

As regards the intervals and bands for the cumulative process, they depend on
a complicated (and random) convolution of distributions of increments. We may
consider an approximation depending only on cumulated means and variances of in-
crements, though they actually depend also on the shape of distribution. A practical
construction can for instance select the bound

b(t) = b0(t) · {µ(t, z(t)) + cσ(t, z(t))},

where b0(t) is the corresponding bound (i.e. of the interval or of the band) for
the counting process, c is an constant derived empirically for the actual shape of
distribution of increments.

Another possibility consists in the simulation, i.e. in the ”empirical” deriva-
tion of prediction regions. At a fixed point t, the empirical prediction interval is
given directly by the empirical quantiles obtained from the sample of realized values
Ci(t), i = 1, 2, ..., n. The derivation of the empirical prediction bands for trajecto-
ries of C(t) on the whole interval [0, T ] is not so easy, though one can imagine an
algorithm shifting the bands joining the empirical quantiles until, for instance, 90%
of observed trajectories are inside the region.

5. Conclusion

The main purpose of the paper was to describe and analyze the random process
(called here the cumulative process) consisting in the combination of the counting
process with the process of random increments, and to show its application to the
models of damage processes in the field of reliability analysis. Successful use of
such models requires the development of the methods for estimation of the model
characteristics and also the methods for the prediction of process behaviour under
different conditions. Then, provided we are able to influence these conditions (i.e.
covariates entering the process), we are also able to control (to slower) the growth
of the damage and to prolong the lifetime of the device.
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