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KERNEL FRAME SMOOTHING OPERATORS

VÍTĚZSLAV VESELÝ

Abstract. Basics of frame expansions in separable Hilbert spaces are explained
in context with the theory of pseudoinverse operators. A new geometric ap-
proach is outlined connecting both areas. An iterative frame-based procedure
is suggested which finds, to a given function f , a finite frame or Riesz basis for
its expansion which is ε-optimal in a certain sense. In particular a new type of
kernel smoothing operator based on dual frame expansions is introduced with
which the above procedure allows us to find easily not only ε-optimal band-
widths (scales) as with common kernel smoothing, but also ε-optimal shifts.

Izlo�eny osnovy neortogona	nyh razviti$i tipa fre$im (frame) v
separabe	nyh gi	bertovyh prostranstvah v sootnoxenii k teorii

psevdoobratnyh operatorov. Pokazan novy$i geometriqeski$i podhod,

kotory$i sv�zyvaet �ti oblasti. Predlagaem iterativnu� proce-

duru na bazise �tih razviti$i, kotora� nahodit k danno$i funkcii

f koneqny$i fre$im ili bazis Risa dl� e e razlo�eni�, kotoroe est~

optima	noe v opredel ennom smysle. V specia	nom sluqae vveden

novy$i tip sgla�iva�wego operatora tipa �dra, kotory$i osnovan na

razvitii po dua	nomu fre$imu i pozvol�et s pomow� predyduwe$i

procedury legko na$iti ne to	ko optima	nu� xirinu po�sa (scale)
podobno kak v obyknovennom sluqae sgla�ivani� pri pomowi �der,

no to�e optima	ny$i sdvig.

1. Introduction

The origins of the frame theory date back to the work of Duffin and Schaeffer [5],
more details can be found in [16], too.

Section 2 contains symbol list along with some preliminaries of functional analysis
(see e.g. [4, 11, 15]) inclusively pseudoinverse operators [7].

Basics of frame expansions in separable Hilbert spaces are explained in context
with the theory of pseudoinverse operators (sections 3,4,5). Most of what is col-
lected here is scattered around specialized literature (mostly related to wavelets),
for example [1, 2, 3, 12], to mention a few. In addition, a new geometric approach
is suggested by the author for both areas leading to another (geometric) definition
of a frame equivalent with the widely used analytic descriptions, and making evi-
dent that frames are nothing but synonyms for bounded operators with closed range
space — exactly those operators for which bounded pseudoinverse exists [7]. From
the statistical point of view frame may play the role of a set of regressors (even
countable) for a generalized regression model the solution of which belongs to an
abstract H-space, typically a functional space, or a space of random variables, or
even random processes [8].
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We suggest an iterative frame-based procedure in section 6 which finds, to a given
function f , a finite frame spanning a finite-dimensional H-subspace Hε(f) (depend-
ing on f) of a fixed (even infinite-dimensional) space H ⊆ H2 giving nearly exact
(ε-optimal) least-squares approximation f̂ε ∈ Hε of f̂ in the sense that ‖f̂− f̂ε‖ ≤ ε,
where f̂ ∈ H is the exact least-squares approximation (orthogonal projection) of f
in the space H.

New type of kernel smoothing operator using dual frame expansions is intro-
duced in section 7 allowing us, applying the above procedure, to find easily not only
ε-optimal bandwidths (scales) as with the common kernel smoothing [6, 9, 10], but
also ε-optimal shifts.

2. Notation and theoretical background of functional analysis

2.1. Notation and preliminaries.
• N,Z,R,C . . . natural numbers, integers, real and complex numbers, respec-
tively.

• ZN := {0, 1, . . . , N − 1} . . . residuals modulo N ∈ N.
• |M | . . . cardinality of a set M .
• J, J1, J2, . . . . . . indexing sets; J, Ji ⊆ Z, usually N, Z or ZN .
• X,X1, X2 . . . . . . complex normed linear spaces (NL-spaces) with norm ‖·‖
or inner product spaces (IP-spaces) with the inner product 〈·, ·〉.

• B,B1, B2 . . . . . . complete NL-spaces, alias Banach spaces (B-spaces).
• H,H1,H2 . . . . . . complete separable IP-spaces, alias Hilbert spaces (H-spaces).
• L(M), M ⊆ X . . . linear subspace (L-subspace) in X spanned by M .
• M , M ⊆ X . . . closure of a set M in X
• L(M),M ⊆ X . . . closed lineare subspace inX spanned byM ; Xcomplete⇒
L(M) is complete; X1 ⊆ X complete ⇒ X1 is closed.

• x1 ⊥ x2; x1, x2 ∈ X . . .x1 is orthogonal to x2 (〈x1, x2〉 = 0).
• x ⊥M ; ∅ �=M ⊆ X . . .x is orthogonal to M (x ⊥ y ∀y ∈M).
• M⊥; ∅ �= M ⊆ X . . . orthogonal complement of M in X: M⊥ := {x ∈
X |x ⊥M}, M⊥ is a closed linear subspace in X, i.e. B- or H-subspace and

M⊥ = L(M)⊥ = L(M)
⊥
; moreover it holds M⊥⊥ = L(M).

• E,E1, E2, . . . . . . orthonormal basis (ONB) in H,H1,H2,. . . , respectively:
E =: {en}n∈J , Ei =: {en}n∈Ji, en ⊥ em for m �= n, ‖en‖ = 1, L(E) = H,
L(Ei) = Hi, i = 1, 2, . . . .

• dimH = |E| = |J | . . . dimension of H;
separability of H ⇒ dimH ≤ ℵ0, we write also dimH =∞ if dimH = ℵ0.

• L2(a, b), L2 := L2(−∞,∞) . . . the H-space of all functions measurable and
absolutely square integrable (in the Lebesgue sense) on the interval (a, b) ⊆
R, −∞ ≤ a < b ≤ ∞; dimL2(a, b) =∞.

• �2(J), �2 := �2(Z) . . . the H-space of all J-indexed absolutely summable
sequences: {ξn}n∈J ,

∑
n∈J |ξn|2 <∞, dim �2(J) = |J |.

• E :=
{
{δm,n}m∈J

}
n∈J

. . . natural orthonormal basis in �2(J).
• L(X1, X2) . . . complex vector space of all linear operators T : X1 → X2.
• D(T ) := X1, T ∈ L(X1, X2) . . . domain of operator T .
• N (T ) ⊆ X1, T ∈ L(X1, X2) . . . null space of operator T : N (T ) := {x ∈
D(T ) |Tx = 0}.

• R(T ) ⊆ X2, T ∈ L(X1, X2) . . . range space of operator T : R(T ) := {y ∈
X2 | y = Tx for some x ∈ D(T )}.
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• B(X1, X2) ⊆ L(X1, X2) . . . complex NL-space of all bounded (continuous)
linear operators T : X1 → X2, ‖Tx‖ ≤ ‖T‖‖x‖ ∀x ∈ X1; B(X,B) is a
B-space — consequently B(H1,H2) is a B-space as well.

• LI(X1, X2) ⊆ L(X1, X2) . . . subset of all linear isomorphisms T : X1 → X2

(bijective linear operators); we write X1
LI� X2 if LI(X1, X2) �= ∅.

• T LI(X1, X2) ⊆ B(X1, X2) . . . subset of all topological linear isomorphisms
T : X1 → X2: T ∈ T LI(X1, X2) ⇔ T ∈ LI(X1, X2)∩B(X1, X2) & T−1 ∈
LI(X2, X1) ∩ B(X2, X1); we write X1

TLI� X2 if T LI(X1, X2) �= ∅.
• UI(H1,H2) ⊆ T LI(H1,H2) . . . subset of all unitary (=surjective isometric)
operators T : H1 → H2, it holds:
T ∈ UI(H1,H2) ⇔ H2 = R(T ) & ‖Tx‖ = ‖x‖ ∀x ∈ H1 (in particular

‖T‖ = 1) ⇔ H2 = R(T ) & 〈Tx, Ty〉 = 〈x, y〉 ∀x, y ∈ H1; we writeH1
UI� H2

if UI(H1,H2) �= ∅.
• I, IX . . . identity operator, D(I) = X; clearly IX ∈ T LI(X,X), ‖I‖ = 1
and even IH ∈ UI(H,H).

• T ∗ . . . adjoint operator of T ∈ B(H1,H2): 〈Tx1, x2〉 = 〈x1, T
∗x2〉 ∀x1 ∈

H1, x2 ∈ H2; it holds:
(a) T ∗ ∈ B(H2,H1), ‖T‖ = ‖T ∗‖ and ‖TT ∗‖ = ‖T ∗T‖ = ‖T‖2 = ‖T ∗‖2;
(b) T ∈ T LI(H1,H2)⇒ T ∗ ∈ T LI(H2,H1) and (T ∗)−1 = (T−1)∗

(c) T ∈ UI(H1,H2) ⇔ T ∈ T LI(H1,H2) & T ∗ = T−1.
• T = T ∗, T ∈ B(H,H) . . . self-adjoint operator; clearly IH is self-adjoint.
• T ≥ 0 (T > 0), T ∈ B(H,H) . . . (strictly) positive operator: 〈Tx, x〉 ≥
0 ∀ x ∈ H (〈Tx, x〉 > 0 ∀ 0 �= x ∈ H); it holds:
(a) T ≥ 0 or T > 0⇒ T = T ∗,
(b) T ∈ B(H1,H2)⇒ T ∗T, TT ∗ ≥ 0.

• P, P ∈ B(H,H) . . . orthogonal projection operator, alias self-adjoint idem-
potent bounded linear operator (P = P∗ and P 2 = P); H1 := R(P) is closed,
i.e. H-subspace in H; that is why we write also PH1 instead of P.

• x̂ := PH1x, PH1 ∈ B(H,H) . . . the result of orthogonal projection of any
x ∈ H onto the subspace H1 ⊆ H.

2.2. Basic definitions and theorems for reference.

Theorem 2.1. Given T ∈ B(H1,H2) then the following holds:

(1) N (T ) = R(T ∗)⊥ = R(T ∗)
⊥
, N (T )⊥ = R(T ∗)

(2) N (T ∗) = R(T )⊥ = R(T )
⊥
, N (T ∗)⊥ = R(T )

(3) H1 = R(T ∗)⊕N (T ), H2 = R(T )⊕N (T ∗)

(4) If T = T ∗ then N (T ) = R(T )⊥ = R(T )
⊥

and R(T ) = N (T )⊥

(5) N (T ∗T ) = N (T ), N (TT ∗) = N (T ∗)
(6) R(T ∗T ) = R(T ∗), R(TT ∗) = R(T )

Definition 2.2. For T ∈ B(H1,H2) we introduce restricted operator T̆ := T |R(T∗) ∈
B(R(T ∗),R(T )), i.e. T̆ x := Tx for all x ∈ R(T ∗).

Theorem 2.3. The restricted operator and its adjoint satisfy:

(1) (T ∗)̆ = T̆ ∗

(2) R(T̆ ) = R(T ), R(T̆ ∗) = R(T ∗)
(3) ‖T‖ = ‖T̆‖ = ‖T̆ ∗‖ = ‖T ∗‖
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Proof. Put H := R(T ), H∗ := R(T ∗), then by 2.1(3) H1 = H∗ ⊕N (T ) and H2 =
H ⊕N (T ∗).

(1) x ∈ H∗, y ∈ H arbitrary ⇒ 〈T̆ x, y〉 = 〈Tx, y〉 = 〈x, T ∗ y〉 = 〈x, (T ∗)̆y〉 ⇒
(T ∗)̆ = T̆ ∗.

(2) f = f̂+f⊥ ∈ H1, f̂ = PH∗f ∈ H∗, f⊥ ∈ H∗⊥ = N (T )⇒ Tf = T f̂+Tf⊥ =
T̆ f̂ . Thus we have got R(T ) = R(T̆ ). Similarly we prove R(T̆ ∗) = R(T ∗).

(3) As ‖T‖ = ‖T ∗‖ and ‖T̆‖ = ‖T̆ ∗‖, it is sufficient to prove ‖T‖ = ‖T̆‖. For any
f ∈ H∗ we have ‖T̆ f‖ = ‖Tf‖ ≤ ‖T‖‖f‖⇒ ‖T̆‖ ≤ ‖T‖. On the other hand,

for any f ∈ H1: ‖Tf‖2 (2)
= ‖T̆ f̂‖2 ≤ ‖T̆‖2‖f̂‖2 ≤ ‖T̆‖2(‖f̂‖2 + ‖f⊥‖2) =

‖T̆‖2‖f‖2 ⇒ ‖Tf‖ ≤ ‖T̆‖‖f‖ ⇒ ‖T‖ ≤ ‖T̆‖.
�

Theorem 2.4. Let T ∈ L(X1, X2). Then T ∈ T LI(X1,R(T )) if and only if there
exists 0 < m ≤ M < ∞ : m‖x‖ ≤ ‖Tx‖ ≤ M‖x‖ for all x ∈ X1. In such a case

1
‖T−1‖ ≥ m and ‖T‖ ≤ M are best bounds for T �= 0, and R(T ) = R(T ) if X1 is
complete (B-space).
Theorem 2.5. Let T ∈ B(H1,H2). Then the following are equivalent:

(1) T ∈ T LI(H1,R(T ))
(2) R(T ∗) = H1 (T ∗ is surjective)
(3) N (T ) = {0} (T is injective) and R(T ∗) = R(T ∗)

Corollary 2.6. T ∈ T LI(H1,H2) if and only if T ∗T ∈ T LI(H1,H1)
Corollary 2.7. Let T ∈ B(H1,H2) and be any of R(T ) or R(T ∗) closed. Then the
latter range space is closed as well, and both T̆ and T̆ ∗ are TLI: T̆ ∈ T LI(R(T ∗),R(T ))
and T̆ ∗ ∈ T LI(R(T ),R(T ∗)).

Proof. Applying 2.3(2), we get:
I.R(T ∗) = R(T̆ ∗) closed (H-subspace)⇒ T̆ is TLI by 2.5 and thus alsoR(T ) = R(T̆ )
is closed in view of 2.4.
II. Using the same argumentation: R(T ) = R(T̆ ) = R(T̆ ∗∗) closed⇒ T̆ ∗ is TLI and
thus also R(T ∗) = R(T̆ ∗) is closed. �

Definition 2.8 (Bounded pseudoinverse of bounded linear operators).
Let T ∈ B(H1,H2), R(T ) = R(T ). Then operator T+ ∈ B(H2,H1) is called
(Moore-Penrose) pseudoinverse of T if the following identities are fulfilled:

(I1) TT+T = T
(I2) T+TT+ = T+

(I3) (TT+)∗ = TT+ (TT+ is self-adjoint)
(I4) (T+T )∗ = T+T (T+T is self-adjoint)

The restricted operator T̆ yields a geometrically transparent formula for T+:
Theorem 2.9. If T ∈ B(H1,H2) and R(T ) = R(T ) then R(T ∗) = R(T ∗), both
T̆ and T̆ ∗ are TLI and there exists exactly one pseudoinverse of T given by T+ :=
T̆−1PR(T ).
We have also R(T+) = R(T̆−1) = R(T ∗) and

(1) TT+ = PR(T ), I − TT+ = PN (T∗)

(2) T+T = PR(T∗), I − T+T = PN (T )

(3) If T = T ∗ then TT+ = T+T = PR(T ), I − TT+ = I − T+T = PN (T ),
T = TPR(T ) = PR(T )T and T+ = T+PR(T ) = PR(T )T

+.
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Proof. It is straightforward to verify that the operator T̆−1PR(T ) satisfies (I1)–(I4).
Uniqueness is a pure algebraic consequence of identities (I1)–(I2) so as it is in the
case of standard matrix pseudoinverse, but may be seen immediately also from 2.10.
The remaining properties are easy to verify as well. �

Following the analogy with matrices, all well-known properties and identities of
the matrix pseudoinverse remain valid in unchanged or only slightly modified form.
Their geometrical proof based on T+ := T̆−1PR(T ) is in most cases a simple exercise
compared with standard algebraic approach relying only on identities (I1)–(I4).

The following two corollaries summarize some of the properties.
Corollary 2.10. x0 := T+y = argminx∈H1

‖y − Tx‖ where x0 ∈ R(T ∗) is the only
least-squares solution to the operator equation Tx = y having minimal norm among
all other possible solutions, more precisely: should x �= x0 be another least-squares
solution Tx = Tx0 = ŷ then x /∈ R(T ∗) and ‖x‖ > ‖x0‖.
Corollary 2.11. Some more identities for T+:

(I5) 0+ = 0∗

(I6) (T ∗)+ = (T+)∗, in particular if T is self-adjoint then T+ is self-adjoint as
well and N (T+) = N (T ∗)

(I7) T++ = T
(I8) If T ∈ T LI(H1,H2) then T+ = T−1

(I9) (cT )+ = c+T+ for any c ∈ C where c+ =

{
1
c for c �= 0
0 for c = 0

(I10) (T ∗T )+ = T+(T ∗)+ and (TT ∗)+ = (T ∗)+T+ are self-adjoint
(I11) T+ = (T ∗T )+T ∗ =: R+T ∗ where R := T ∗T , R(R) = R(T ∗)
(I12) T+ = T ∗(TT ∗)+ =: T ∗S+ where S := TT ∗, R(S) = R(T )
(I13) (T+)∗ = TR+ = S+T

3. Frames as a generalized concept of Riesz and orthonormal bases

3.1. Orthonormal bases.
Definition 3.1. (Bessel operator)
For Φ := {φn}n∈J ⊆ H the operator LΦ ∈ L(H,C|J|) defined by LΦx := {〈x, φn〉n}n∈J

is called Bessel operator of the sequence Φ. For fixed Φ, which will be the frequent
case later on, we put simply L := LΦ.
Remark 3.2. (Adjoint to Bessel operator)
If Tξ :=

∑
n∈J ξnφn converges in H at least in the weak sense for any ξ :=

{ξn}n∈J ∈ H1 ⊇ R(L) and T ∈ B(H1,H) then 〈
∑

n∈J ξnφn, f〉 =
∑

n∈J ξn〈φn, f〉 =∑
n∈J ξn〈f, φn〉 for all f ∈ H saying that 〈Tξ, f〉 = 〈ξ, Lf〉, and consequently

L = T ∗ ∈ B(H,H1). Conversely we have L∗ = T , alias L∗ξ =
∑

n∈J ξnφn.
Theorem 3.3. If Φ = {φn}n∈J ⊆ H is ONB in H then Φ is an unconditional
Schauder basis allowing unique expansion of any f ∈ H in the form f = L∗ξ =∑

n∈J ξnφn, ξn = 〈f, φn〉 where ξ := {ξn}n∈J = Lf ∈ �2(J) and summation is
independent of the ordering of the basis elements φn. As L ∈ UI(H, �2(J)) by
Parseval identity, we have ‖L‖ = 1 and L∗ = L−1.
Theorem 3.4. Every operator U ∈ UI(H1,H2) maps any ONB {φn}n∈J in H1

onto the ONB {Uφn}n∈J in H2. Conversely, the natural one-to-one correspondence
ψn = Uφn between the elements of any pair of ONBs {φn}n∈J in H1 and {ψn}n∈J

in H2 may be in a unique way extended to an operator U ∈ UI(H1,H2): Uf =∑
n∈J〈f, φn〉ψn.
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3.2. Riesz bases.
In view of 3.4 a generalization close to ONB can be obtained by relaxing the strict
unitarity requirement on U and assuming just U ∈ T LI(H1,H2) only. We arrive at
the following definition.
Definition 3.5. Φ := {φn}n∈J ⊆ H is called a Riesz basis (RB) in H if there
exists operator T := TΦ ∈ T LI(H1,H) and ONB E = {en}n∈J ⊆ H1 such that
φn = Ten for all n ∈ J (clearly H ⊃ {0} because φn �= 0 in view of en �= 0 ). As
〈f, φn〉 = 〈f, T en〉 = 〈T ∗f, en〉, we have L = LET

∗ ∈ T LI(H, �2(J)).We can assume
without loss of generality H1 = �2(J), E = E and T = L∗ (LE = I).
Theorem 3.6. If Φ = {φn}n∈J ⊆ H is RB in H then Φ is an unconditional
Schauder basis allowing unique expansion of any f ∈ H in the form f = Tξ =
L∗ξ =

∑
n∈J ξnφn where ξn = 〈T−1f, en〉 in view of T−1f =

∑
n∈J ξnen.

Theorem 3.7 (Equivalent characterizations of a Riesz basis).
Let Φ = {φn}n∈J be a sequence in H and L its Bessel operator, then the following
statements are equivalent:

(1) Φ is a Riesz basis in H
(2) L ∈ T LI(H, �2(J)) (L = T ∗)
(2’) φn are independent in the sense

∑
n∈J ξnφn = 0 implies ξn = 0 for all n ∈ J ,

and there exist 0 < A ≤ B <∞ such that for all f ∈ H holds:

A‖f‖2 ≤ ‖Lf‖2 =
∑
n∈J

|〈f, φn〉|2 ≤ B‖f‖2 (3.1a)

(3) L∗ ∈ T LI(�2(J),H) (L∗=T)

Proof. Equivalence (1) ⇔ (2) is by definition 3.5 while (2) ⇔ (2’) is easy to see as
follows: L : H → �2(J) is TLI ⇔ L : H → R(L) is TLI and surjection on �2(J)
⇔ L : H → R(L) is TLI and N (L∗) = {0} by 2.5(2)(3), with R(L) closed due to
2.4 ⇔ (3.1a) is satisfied, using 2.4 once more, along with independence (which is
equivalent to N (L∗) = {0}). Clearly (2) ⇔ (3) holds as well. �

Example 3.8 (Matrices).
Let T = [φ1, φ2, . . . , φN ] be a matrix M ×N with columns φi, i = 1, 2, . . . , N . Then
T ∈ B(�2(ZN ), �2(ZM )) defines a Riesz basis Φ = {φn}n∈ZN in R(T ) ⊆ �2(ZM ) if
and only if T is of full column rank N . T defines a Riesz basis Φ in the whole space
�2(ZM ) if and only if T is regular.

3.3. Frames.
Relaxing still more the requirements on the defining operator TΦ of a Riesz basis Φ,
we arrive at the most general concept of a frame.
Definition 3.9. Φ := {φn}n∈J ⊆ H is called a frame in H ⊃ {0} if there exists
a surjective operator T := TΦ ∈ B(H1,H) and ONB E = {en}n∈J ⊆ H1 such
that φn = Ten for all n ∈ J . As 〈f, φn〉 = 〈f, T en〉 = 〈T ∗f, en〉, we have again
L = LET

∗ ∈ T LI(H, �2(J)) in view of 2.5 (clearly there exists n ∈ J : φn �= 0 and
consequently T �= 0 and L �= 0). We can again assume without loss of generality
H1 = �2(J), E = E and T = L∗ (LE = I).

Theorem 3.10. If Φ = {φn}n∈J ⊆ H is frame in H then H = L(Φ), allowing
unconditional (generally non-unique) expansion of any f ∈ H in the form f = Tξ =
L∗ξ =

∑
n∈J ξnφn where ξn = 〈g, en〉 for some g ∈ H1 satisfying f = Tg (thus Φ

need not be a Schauder basis in general).
Later on we exclude the trivial case H = {0}.
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Theorem 3.11 (Equivalent characterizations of a frame).
Let Φ = {φn}n∈J be a sequence in H and L its Bessel operator, then the following
statements are equivalent:

(1) Φ is a frame in H
(2) L ∈ T LI(H,R(L)), R(T ∗) = R(L) ⊆ �2(J) (L = T ∗)
(2’) there exist 0 < A ≤ B <∞ such that for all f ∈ H holds:

A‖f‖2 ≤ ‖Lf‖2 =
∑
n∈J

|〈f, φn〉|2 ≤ B‖f‖2 (3.2)

(3) L∗ ∈ B(�2(J),H) is surjective (L∗ = T ).

Proof. Analogical to the proof of 3.7 when omitting the surjectivity assumption of
L on �2(J). �

Again, as with Riesz basis, equivalence (1) ⇔ (2’) is connecting the standard
definition of a frame with the geometrical one of 3.9.
Example 3.12 (Matrices).
Let T = [φ1, φ2, . . . , φN ] be a matrix M ×N with columns φi, i = 1, 2, . . . , N . Then
T ∈ B(�2(ZN ), �2(ZM )) defines a frame Φ = {φn}n∈ZN in R(T ) ⊆ �2(ZM ). T defines
a frame Φ in the whole space �2(ZM ) if and only if T is of full row rank M .

4. Frame expansions and pseudoinverse operators

For simplicity we will assume in this section H1 = �2(J) with natural ONB
E := E = {εn}n∈J which results in TΦ = LΦ

∗ and LΦ = TΦ
∗.

Definition 4.1 (Operator terminology for frames).
Let Φ = {φn}n∈J be a frame in H, then we call

• L := LΦ . . . representation or discretization operator of frame Φ.
• L∗ . . . reconstruction operator of frame Φ.
• S = TT ∗ = L∗L . . . frame operator for Φ.
• R = T ∗T = LL∗ . . . correlation operator of frame Φ.

Lemma 4.2. Let Φ = {φn}n∈J be a frame in H, then for f ∈ H and ξ := {ξn}n∈J ∈
�2(J) the above operators evaluate as follows:

(1) Lf = {〈f, φn〉}n∈J , L∗ξ =
∑

n∈J ξnφn

(2) Sf =
∑

n∈J〈f, φn〉φn

(3) Rξ =
{∑

n∈J〈φn, φm〉ξn
}

m∈J
. If |J | =∞, say J = N, then limn→∞〈φn, φm〉 =

0 for each fixedm ∈ N (rows of ‘matrix’ [R] = [Rmn]m,n∈Z, Rmn = 〈φn, φm〉 =
〈φm, φn〉 tend to zero), and conversely limm→∞〈φn, φm〉 = 0 for each fixed
n ∈ N (columns of ‘matrix’ [R] tend to zero).

Theorem 4.3. Let Φ = {φn}n∈J be a sequence in H such that L := LΦ ∈ B(H, �2(J)),
then the following statements are equivalent

(1) Φ is a frame in H
(2) S ∈ T LI(H,H)
(3) There exist 0 < A ≤ B <∞ (the same as in (3.2)) such that

A‖f‖ ≤ ‖Sf‖ ≤ B‖f‖ (4.1)

Proof. (1)3.11⇔ L is TLI 2.6⇔ S := L∗L is TLI, which is (2). (2) ⇔ (3) follows by 2.4
with the same A,B as in (3.2) in view of ‖Lf‖2 = 〈Lf,Lf〉 = 〈L∗Lf, f〉 = 〈Sf, f〉
and the Schwarz’s inequality. �
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Theorem 4.4 (Dual frame).
Let Φ = {φn}n∈J be a frame (RB) in H, then the sequence Φ′ = {φ′n}n∈J , φ′n :=

S+φn
4.3(2)
= S−1φn is also a frame (RB) called dual frame (RB) to Φ. We have

also φ′n = S+L∗εn
(I13)
= L∗R+εn.

Proof. S is TLI by 4.3⇒ S+ = S−1 by (I13)⇒ Φ′ is a frame according to definition
3.9 because S−1φn = S−1TΦen where S−1TΦ is surjective. �

Corollary 4.5 (Dual operator relationships using S).
(1) L′ := LΦ′ = LS−1, L = L′S (relationship between L and L′)
(2) L′∗ = S−1L∗, L∗ = SL′∗ (relationship between L∗ and L′∗)
(3) S′ = S−1, S = S′−1 (relationship between S and S′)

Proof. S is self-adjoint and TLI ⇒ (S−1)∗ = (S∗)−1 = S−1 and thus we get:
(1) L′ = T ∗

Φ′ = (S−1TΦ)
∗ = T ∗

ΦS
−1 = LS−1 ⇔ L′S = L.

(2) L′∗ = (LS−1)∗ = S−1L∗ ⇔ SL′∗ = L∗.
(3) S′ = L′∗L′ = S−1L∗LS−1 = S−1SS−1 = S−1 ⇔ S = S′−1.

�

Corollary 4.6 (Duality principle).
If Φ is a frame in H then Φ′′ = Φ.

Proof. φ′′n = (φ′n)
′ = (S′)−1φ′n = (S′)−1S−1φn

4.5(3)
= SS−1φn = φn. �

Theorem 4.7 (The main representation theorem).
If Φ = {φn}n∈J is a frame in H ⊆ H2 then PH = L∗L′ = L′∗L, alias it holds

f̂ =
∑
n∈J

〈f, φ′n〉φn =
∑
n∈J

〈f, φn〉φ′n for all f ∈ H2. (4.2)

Proof. For f = f̂ +f⊥ ∈ H2 we have in view 2.1(3) Lf = Lf̂ and L′f = L′f̂ . Hence

L∗L′f = L∗L′f̂
4.5(1)
= L∗LS−1f̂ = SS−1f̂ = f̂ = S−1Sf̂ = S−1L∗Lf̂

4.5(2)
= L′∗Lf̂ =

L′∗Lf . �

5. Frequent special cases: Gabor and wavelet frames

In the following we mention two frequently used frame constructions with dou-
bly-indexed frame elements φa,b where (a, b) ∈ J ⊆ A×B ⊆ Z× Z.
Definition 5.1 (Gabor frame).
LetH be a functional H-space and ϕ(t) ∈ H, ‖ϕ‖ = 1, such that Φ = {ϕa,b(t)}(a,b)∈J ,
ϕa,b(t) := ϕ(t− b)ei2πat constitutes a frame in H. We call Φ a Gabor frame in H
and ϕ(t) its mother function (all frame elements are obtained from ϕ(t) via shifts
b ∈ B and modulations ei2πat with frequencies a ∈ A). We write Φ = G(ϕ,A,B).
Definition 5.2 (Wavelet frame).
LetH be a functional H-space and ϕ(t) ∈ H, ‖ϕ‖ = 1, such that Φ = {ϕa,b(t)}(a,b)∈J ,
ϕa,b(t) := |a|− 1

2ϕ
(

t−b
a

)
constitutes a frame in H (clearly ‖ϕa,b‖=1 if H = L2). We

call Φ a wavelet frame in H and ϕ(t) its mother wavelet function (all frame
elements are obtained from ϕ(t) via shifts b ∈ B and scaling with terms a ∈ A). We
write Φ =W (ϕ,A,B).
Remark 5.3.
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(1) If A and B are finite, then Gabor and wavelet frames exist with arbitraryϕ(t)
in H = L(Φ). In the infinite case A, B, J ⊆ A×B and ϕ must fulfil certain
conditions to define a frame. The common setting is with A = {na0 |n ∈
Z}, a0 > 0 and B = {n b0 |n ∈ Z}, b0 > 0. With more strict conditions
even Riesz bases or ONBs may be obtained. At present various wavelet
orthonormal bases for the dyadic case J = {(2−j, k2−j) | j ∈ Z, k ∈ Z} are
popular in many applications, giving ϕj,k(t) = 2

j
2ϕ(2jt− k) — see also [14].

(2) ϕ(t) may be of kernel type (ϕ(t) ≥ 0, t ∈ R) in the case of Gabor frame
for the space L2 because the modulation term ei2πat results in shifts in the
frequency domain allowing to span the whole space. That is in contrast
with the wavelet frame the mother wavelet of which has to be an oscillating
function.

6. Frame setting of the general approximation problem

6.1. Deterministic setting.
Let H2 be a functional H-space and G ⊂ H2 its subset spanning a subspace H :=
L(G), ‖g‖ = 1 for all g ∈ G. We believe that a function f ∈ H2 is well approximated
by functions from H. The best approximation in L2-norm is f̂ = PHf . Given a
tolerance ε > 0, we are looking for a H-subspace

Hε := Hε(f) ⊆ H, dimHε <∞, such that ‖f̂ − PHεf‖ ≤ ε. (6.1)

Observe that PHε depends also on f . In the following we write briefly f̂ε := PHεf .

Lemma 6.1. For every f ∈ H2 and ε > 0 there exists finite Φε := Φε(f) ⊆ G which
is either empty or Riesz basis for a finite-dimensional H-subspace Hε satisfying (6.1).

Proof. f̂ ∈ H = L(G) ⇒ ∃{sn}n∈N, sn ∈ L(G), sn = cn1g1 + cn2g2 + · · ·+ cnmngmn ,
cnj ∈ C, gj ∈ G such that ‖f̂ − sn‖ → 0 for n→∞. Thus, given ε > 0, there exists
N : ‖f̂ − sN‖ ≤ ε. If we put Φε := {g1, g2, . . . , gmN}, then sN ∈ L(Φε) =: Hε and
‖f̂−PHεf‖ = ‖f̂−PHε f̂‖ ≤ ‖f̂−sN‖ ≤ ε. If Hε = {0} we can put Φε = ∅, otherwise
one can assume without loss of generality that g1, g2, . . . , gmN are independent and
dimHε = mN < ∞. Consequently, Φε is Riesz basis in Hε because the associated
operator L∗ ∈ LI(�2(Jε),Hε) = T LI(�2(Jε),Hε), Jε = {1, 2, . . . ,mN}, where the
latter identity holds due to finite dimension of Hε (cf. example 3.8). �

Theorem 6.2 (Algorithm: construction of Φε(f)).
Suppose ε > ‖f − f̂‖ and |G| ≤ ℵ0. The steps of an algorithm for finding Φε(f) =:
{φm}1≤m≤M and f̂ε are as follows:

1◦ Initial step for m = 0: Φ0 := ∅, H0 = {0}.
2◦ Repeated step for m > 0:

Let us denote Φm−1 := {φ1, . . . , φm−1} elements which already have been
constructed in previous steps and put Hm−1 := L(Φm−1), compute f̂m−1 :=
PHm−1f and f⊥m−1 := f − f̂m−1. Then we proceed in the order as follows:
(a) If ‖f⊥m−1‖ ≤ ε, then we can put Φε(f) = Φm−1, M = m− 1, f̂ε = f̂m−1

and stop.
(b) Else if 〈f⊥m−1, g〉 = 0 for each g ∈ G−Φm−1, then f⊥m−1 ⊥ H saying that

f̂m−1 = f̂ is exact solution, consequently we put again Φε(f) := Φm−1,
M := m− 1, f̂ε = f̂m−1 and stop.
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(c) Otherwise there exists g ∈ G − Φm−1: 〈f⊥m−1, g〉 �= 0 and we select
φm ∈ G− Φm−1 for which |〈f⊥m−1, φm〉| is sufficiently large,
φm := argmaxg∈G−Φm−1

|〈f⊥m−1, g〉| being the best choice provided that
such φm exists. Afterwards we put m = m + 1 and continue with the
next step 2◦.

Proof.
The algorithm will stop after finite number of steps:
Should this not be the case, denote H∞ := L(Φ∞), where Φ∞ = {φ1, φ2, . . . } =⋃∞

m=1 Φm lists all the elements selected by countably many steps (c) of our algorithm.
For any ε′ > 0, by lemma 6.1, there exists Φε′ : ‖f̂∞ − PHε′ f‖ ≤ ε′ where f̂∞ :=
PH∞f and Hε′ = L(Φε′). Since Φε′ ⊆ Φ∞ is empty or finite, there must exist
N ∈ N such that ∀m ≥ N : Φε′ ⊆ ΦN ⊆ Φm and Hε′ ⊆ HN ⊆ Hm, yielding
‖f̂∞ − f̂m‖ ≤ ‖f̂∞ − PHε′ f‖ ≤ ε′ for any m ≥ N . Thus we have proved f̂m → f̂∞
for m → ∞. Using this and the continuity of the inner product, we are about to
show f̂∞ = f̂ . It is sufficient to verify f − f̂∞ ⊥ H, or, 〈f − f̂∞, g〉 = 0 ∀ g ∈ G. If
there exists g ∈ G: 〈f − f̂∞, g〉 �= 0, then 〈f, g〉 �= 〈f̂∞, g〉 and g ∈ G− Φ∞ because
of f − f̂∞ ⊥ Φ∞. As, by continuity 〈f̂m, g〉 → 〈f̂∞, g〉, there exists m0 such that
〈f, g〉 �= 〈f̂m, g〉 ∀m ≥ m0. Hence 〈f − f̂m, g〉 �= 0 ∀m ≥ m0 ⇒ g ∈ Φ∞ (g had to be
selected into Φm for some m). But this is contradiction with g ∈ G − Φ∞. Putting
now ε′ := ε− ‖f − f̂‖ > 0, we have 0 < ε′ ≤ ε and the following estimate:

‖f⊥N‖ = ‖f − PHN f‖ ≤ ‖f − f̂∞‖+ ‖f̂∞ − f̂N‖ ≤ ‖f − f̂∞‖+ ‖f − PHε′ f‖ ≤
≤ ‖f − f̂‖+ ε′ = ε.

Thus stop condition (a) is fulfilled with m = N + 1 which contradicts our original
assumption.

If the algorithm stops after completing M steps then
(1) Φε := ΦM is a correct choice:

Indeed, the algorithm has stopped either due to condition (a) or (b) with
m =M + 1:
(a) f − f̂ ∈ H⊥ and f̂ − PHM f ∈ H (in view of HM ⊆ H) ⇒

‖f − PHM f‖2 = ‖f − f̂‖2 + ‖f̂ − PHM f‖2 ⇒ ‖f̂ − PHM f‖2 =
‖f −PHM f‖2−‖f − f̂‖2 ≤ ‖f −PHM f‖2 = ‖f⊥M‖2 ≤ ε2 due to fulfilled
condition (a).

(b) ⇒ 〈f⊥M , g〉 = 0 ∀ g ∈ G−ΦM ⇒ 〈f⊥M , g〉 = 0 ∀ g ∈ G because f⊥M ⊥ ΦM .
Thus f⊥M ⊥ H and f̂ = f̂M := PHM f is exact solution ⇒
0 = ‖f̂ − PHM f‖ ≤ ε.

(2) ΦM is empty with M = 0 or Riesz basis of HM with M > 0:
• M = 0 ⇒ ΦM = ∅ in view of 1◦.
• M > 0: As dimHM <∞, it is sufficient to show that ΦM = {φ1, φ2, . . . ,
φM} are independent (cf. proof of 6.1). We are going to show by
induction on m that Φm = {φ1, φ2, . . . , φm} are independent for all
1 ≤ m ≤M . Indeed, form = 1 this is true because φ1 ∈ G, ‖φ1‖ = 1⇒
φ1 �= 0. Let by induction hypothesis φ1, φ2, . . . , φm−1 be independent,
then due to (c): Φm = Φm−1 ∪ {φm} where 〈f⊥m−1, φm〉 �= 0 ⇒ φm /∈
L(Φm−1) = Hm−1 (because of f⊥m−1 ⊥ Hm−1) ⇒ φ1, φ2, . . . , φm are
independent.

�



318 Vı́tězslav Veselý

Remark 6.3.

(1) By 4.7

f̂m−1 =L′∗
m−1Lm−1 =

m−1∑
j=1

〈f, φj〉φ′j (6.2)

where Φ′
m−1 := {φ′1, . . . , φ′m−1} is dual frame to Φm−1 in Hm−1, φ′j =

S−1
m−1φj , j = 1, . . . ,m − 1, where Sm−1g

4.2(2)
=

∑m−1
j=1 〈g, φj〉φj , g ∈ Hm−1,

and Sm−1 ∈ T LI(Hm−1,Hm−1) in view of 4.3. Computationally more
practical is the alternative formula φ′j = L∗

m−1R
+
m−1εj (see 4.4) where the

correlation operator Rm−1 = Lm−1L
∗
m−1 is standard matrix operator of size

(m − 1) × (m − 1) with entries Ruv
4.2(3)
= 〈φv , φu〉. Then R+

m−1 is easily
evaluated as standard matrix pseudoinverse.

(2) In practical computations f uses to be described only by the vector of dis-
crete samples f(t) := [f(t1), . . . , f(tN )]T at t = [t1, . . . , tN ]T which intro-
duces additional systematic error into the computation of (6.2) in each step
because the inner products 〈f, φj〉 are to be evaluated approximately. For
example in L2 the integral 〈f, φj〉 =

∫ ∞
−∞ f(u)φj(u) du ≈ ηj where ηj are

approximate values obtained by a suitable (linear) quadrature formula.

6.2. Stochastic setting.

A) Simple approach: With sampled f , in addition to the systematic er-
ror mentioned in 6.3(2), also random errors f(ti) ± ei may disturb the
computation of 〈f, φj〉. Then a suitable estimator L̃m−1 (e.g. a linear
one based on the above mentioned quadrature formula) has to be used:
L̃m−1f(t) ≈ Lm−1f . If L̃m−1 is linear (matrix of size (m − 1) × N) then,
fortunately, with suitable choice of φj (e.g. of kernel type) and/or quadrature
weights, this estimator operates like weighted mean, reducing the corrupting
random noise.
Error propagation: Let V denote the covariance matrix of corrupting noise
vector e = [e1, . . . , eN ]T , then f̂m−1(t′) is estimated on arbitrary mesh
t′ = [t′1, . . . , t

′
N ′ ]T also by linear formula

f̃m−1 := [φ′1(t
′), . . . , φ′m−1(t

′)]L̃m−1f(t)

with covariance matrix Vm−1 := F ′L̃m−1V L̃
∗
m−1F

′∗ when denoting F ′ :=
[φ′1(t

′), . . . , φ′m−1(t
′)]. There R̃m−1 := L̃m−1L̃

∗
m−1 may be viewed as an

estimator for the operator Rm−1 in cases where its entries are not easy to
evaluate by some reason.

B) Sophisticated approach: We operate in the stochastic setting from the
very beginning with H2 being a H-space of random variables or processes
(discrete or continuous) and H its suitable subspace spanned by g ∈ G with
known (or estimated) cross-covariance structure. This allows for exact (or
approximate) computation of the associated correlation operators Rm−1 via
suitable inner products, typically by stochastic integrals in case of processes.
Then estimates f̃m−1 are obtained directly as a random variable or process
by linear combination of some g ∈ G with coefficients evaluated by means
of Rm−1 and the observation of f ∈ H2.
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Example 6.4 (Time series).
Let X = {Xt}t∈Z be a time series, Xt ∈ L2(Ω,A, P ) — the IP-space of all
finite-variance (complex) random variables on probability space (Ω,A, P )
with inner-product 〈X,Y 〉 := EXY . That space is known to be complete
(H-space) but not separable in general. Preserving notation of this section,
we can put:
• H2 := L(X) ⊆ L2(Ω,A, P ) which is separable H-subspace as required.
If X is zero-mean process then, clearly, 〈X,Y 〉 = cov(X,Y ) and ‖X‖ =
σX in H2.

• f := Xn+k for arbitrary but fixed n ∈ Z and a k ∈ N.
• G := {Xt/σt}t≤n, σt := σXt , the set of generators with unit norm
(variance).

• Φε(Xn+k) := {Xn+1−hm}1≤m≤M , hm ∈ N and h1 < · · · < hM .
• f̂ε := X̂ε,n+k the ε-approximation to the best linear k-step prediction
X̂n+k of Xn+k in H := L(G).

We have by (6.2):

X̂ε,n+k =
M∑

j=1

9n(k, hj)φ′j where 9n(k, hj) :=
EXn+kXn+1−hj

σn+kσn+1−hj

.

If X is (weakly) stationary zero-mean with variance σ2 and autocorrelation
function 9(h) := cov(Xt+h, Xt)/σ2 then 9n(k, hj) = cov(Xn+k, Xn+1−hj )/σ2

= 9(k+hj−1), j = 1, 2, . . . ,M , are independent of n. Thus ε-level significant
autocorrelations have been selected by our algorithm from theorem 6.2 to
play the role of dual-frame expansion coefficients. With hj = j for j =
1, 2, . . . ,M (model X ∼ AR(M)) it is straightforward to see that the above
formula is exactly the standard Yule-Walker-type k-step predictor. Indeed,
by theorem 4.4 φ′j = L∗R+εj =

∑M
i=1R

+
ijφi =

∑M
i=1R

+
ijXn+1−i where R+ =

[R+
ij ] and R = [Ruv], Ruv = 〈Xn+1−v/σ,Xn+1−u/σ〉 =

cov(Xn+1−v, Xn+1−u)/σ2 = 9(u− v). Hence

X̂ε,n+k =
M∑

j=1

9(k + j − 1)
( M∑

i=1

R+
ijXn+1−i

)
=

M∑
i=1

( M∑
j=1

R+
ij9(k + j − 1)

)
Xn+1−i.

Denoting �k := [9(k), 9(k+1), . . . , 9(k+M − 1)]T then ξk := [ξk,1, ξk,2, . . . ,

ξk,M ]T is the vector of autoregression coefficients ξk,i :=
∑M

j=1R
+
ij9(k + j −

1) which, when written in matrix form ξk = R+�k, is exactly the least-
mean-square solution to the well-known Yule-Walker system Rξk = �k.
By functionality of algorithm 6.2 the frame elements have been selected
independent and constitute therefore Riesz basis (cf. proof of lemma 6.1).
Then R is TLI (regular) in view of 3.7(2)(3) and R+ I8= R−1. However, in
practical computation with small tolerance ε the matrix R may be close to
singular, that is why the pseudoinverse is more appropriate.

Representing an unknown object (data vector, function, random variable, random
process, etc.) in form of (even non-orthogonal) linear expansion in terms of other
fully or partially known objects is inherent in almost any approximation problem.
The theory of frames yields a fairly general methodological framework for modeling
and solution of many such problems. Dual frame expansion is to be preferred by
reasons of numerical stability.
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A variety of techniques, either known (see example 6.4) or novel (see section 7
below), may be obtained in this way avoiding technical details of the objects under
consideration or their uncertainty due to random effects. Then, at the final compu-
tational step, it is the matter of numerical analysis and statistics (under additional
assumptions if necessary) to quantify and minimize the errors due to finite nature
of estimators used instead of operators involved (see L̃ and R̃ in 6.2A) or commonly
used Yule-Walker estimators for L and R based on estimates of autocorrelation
function 9 from example 6.4).

7. Kernel frame smoothing operators

We state a special approximation problem of 6 as follows:

H2 = L2, G =
{
ϕ
( t− b
a

)
| (a, b) ∈ J ⊆ A×B

}
, |A|, |B| ≤ ℵ0

with a given (kernel) function ϕ(t) ∈ H2. Clearly |G| ≤ ℵ0 satisfies the assumption
of algorithm from theorem 6.2.
Definition 7.1. The orthogonal projection operator PHε(f) ∈ B(H2,Hε) from (6.1)
is called ε-optimal kernel frame smoothing operator for f onto H. If Φε(f) =
{φ1, . . . , φM}, φi(t) = ϕ

(
t−bi

ai

)
, is the associated wavelet frame (RB), then bi are

called ε-optimal shifts and ai ε-optimal scales (bandwidths) for f onto H.
Remark 7.2. By the main representation theorem 4.7 the smoothed function evalu-
ates as

f̂ε(t) =
M∑
i=1

〈f, φi〉φ′i(t) =
M∑
i=1

〈f, φ′i〉ϕ
( t− bi
ai

)
. (7.1)

‘
The latter form confirms that PHε belongs to the family of kernel smoothing oper-

ators [13]. In contrast with the classical case the usual expansion co-ordinates f(ti)
are replaced by more precise dual frame weighted discretization L′(f) = {〈f, φ′i〉}i

and in addition to optimal bandwidths ai also optimal shifts bi may be found whereas
in the classical setting bi = ti are fixed [6, 10]. Nevertheless, if desired, the latter
restriction is easily incorporated by appropriate choice of index set J ⊆ A×B.

Figure 1a) visualizes a true six-element frame (not Riesz basis) Φ := {φ1, . . . , φ6}
derived from lorentzian mother kernel function ϕ(t) := 1

1+4t2 , t ∈ [0, 1], as follows:
φi(t) := ϕ

(
t−bi

ai

)
for i = 1, 2, . . . , 5, φ6(t) := ϕ1(t) + ϕ3(t), with scales a1 = 0.1,

a2 = 0.3, a3 = 0.5, a4 = 0.3, a5 = 0.1 and shifts b1 = 0.1, b2 = 0.3, b3 = 0.5,
b4 = 0.7, b5 = 0.9. The associated dual frame Φ′ is shown in Figure 1b).

Afterward (Figure 2) the function f(t) := −φ1(t)+2φ2(t)+3φ3(t)−2φ4(t)+φ5(t) ∈
L(Φ) (full line) has been reconstructed (dashed line) in terms of φ′i(t) from its discrete
samples corrupted with gaussian zero-mean white noise with variance σ2. Three uni-
form sampling meshes in combination with two noise levels σ = 0.2 and σ = 0.6 con-
firm a very good performance of the kernel frame smoothing operator. Rectangular
rule was used as the simplest quadrature formula for approximate evaluation of inte-
gral scalar products 〈f, φi〉 which play the role of expansion co-ordinates according
to (7.1) — approximation L̃ to the representation operator L.
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Figure 1: six-element lorentzian kernel frame (left) and its dual (right)
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Figure 2: Dual frame reconstruction from 50,20 and 10 samples (top-down)

8. Conclusion

A novel geometric approach was outlined which is useful both for the construction
of pseudoinverse operators in Hilbert spaces (cf. 2.2, 2.3, 2.7, 2.9) and definition of
frames (cf. 3.9) preserving equivalence with the commonly used analytic descriptions
of frames (cf. 3.11). A one-to-one correspondence between frames and operators
having bounded pseudoinverse could thus be established in a transparent way.

A nearly optimal (in a least-squares sense) approximation problem has been for-
mulated and solved in section 6. The associated numerical discretization effects
along with the influence of corrupting random noise are briefly discussed as well.

For a new type of kernel frame smoothing operators introduced in section 7
ε-optimal bandwidths and shifts are easily found as a solution to a special approxi-
mation problem stated above.
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Masaryk. Brunensis, Mathematica, vol. 5, Dept. of Appl. Math., Masaryk University of Brno,

Czech Rep., 1997, pp. 113–128 (Czech).
[11] Angus E. Taylor, Introduction to functional analysis., John Wiley & Sons, Inc., New York,

1958.
[12] Anthony Teolis, Computational signal processing with wavelets, Birkhäuser, Boston-Basel-
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(Society of Czech Mathematicians and Physicists), January 1994, In Czech, pp. 160–171.

[14] , Wavelets and their application to data smoothing, Proceedings of the summer school

ROBUST’96, Lednice, September 1997 (J. Antoch and G. Dohnal, eds.), JČMF (Society of
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