ENTROPY OF FUZZY DYNAMICAL SYSTEMS

BELOSLAV RIEČAN

ABSTRACT. Using fuzzy partitions instead of set partitions we have defined a new invariant of dynamical systems. In this communication we discuss the notion and show how it can be modified to be useful.

Резюме: Изучается динамическая инвариантная система которая испољзует "фази" разладку на месте классическои разладки множеств.

1. Fuzzy entropy

Entropy of dynamical systems has been introduced for distinguishing some nonisomorphic dynamical systems. The notion is based on the notion of the entropy

$$-\sum p_i \log p_i$$

of a set partition. Here we shall consider fuzzy dynamical systems defined by the following way.

Definition. Let (Ω, \mathcal{S}, P) be a probability space, \mathcal{F} be the set of all \mathcal{S} -measurable functions from Ω to [0,1]. Fuzzy dynamical system is the triple (\mathcal{F},m,U) , where $m: \mathcal{F} \to [0,1]$ is defined by the equality

$$m(f) = \int_{\Omega} f dP$$

and $U: \mathcal{F} \to \mathcal{F}$ is a maping satisfying the following conditions:

- (1) If $f + g \le 1_{\Omega}$, then U(f + g) = U(f) + U(g).
- (2) $U(1_{\Omega}) = 1_{\Omega}$.
- (3) m(U(f)) = m(f) for any $f \in M$.

(4)
$$U(f \cdot g) = U(f) \cdot U(g)$$
 for any $f, g \in \mathcal{F}$.

A fuzzy partition is a set $A = \{f_1, ..., f_n\} \subset \mathcal{F}$ such that

$$\sum_{i=1}^{n} f_i = 1_{\Omega}$$

If $A = \{f_1, ..., f_n\}$, then $U^i(A) = \{U^i(f_1), ..., U^i(f_n)\}$, where $U^0(f) = f$, $U^{i+1}(f) = U = (U^i(f))$.

It is easy to see that U(A) is a partition for any partition A. As usual define the entropy function $\varphi : [0,1] \to [0,1]$ by the formula

$$\varphi(x) = -x \log x,$$

if x > 0,

$$\varphi(0) = 0$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 28E10; Secondary 37-99. Key words and phrases. Fuzzy partitions, dynamic systems, entropy.

Beloslav Riečan

If
$$A=\{f_1,...,f_n\},B=\{g_1,...,g_k\}$$
 are two fuzzy partitions then we define

$$A\vee B=\{f_i\cdot g_j;i=1,...,n,j=1,...,k\},$$

the entropy

$$H(A) = \sum_{n=1}^{n} \varphi(m(f_i))$$

and the conditional entropy

$$H(A|B) = \sum_{i=1}^{n} \sum_{j=1}^{k} m(g_j)\varphi(\frac{m(f_i \cdot g_j)}{m(g_j)}),$$

where the summands with $m(g_j) = 0$ are ommitted.

The entropy of a fuzzy dynamical system has been defined by the following formulas:

$$h(A,U) = \lim_{n \to \infty} \frac{1}{n} H(\bigvee_{i=1}^{n-1} U^i(A)).$$

Finally, if $G \subset \mathcal{F}$ and \mathcal{P} is the family of all fuzzy partitions, then

$$h_G(U) = \sup\{h(A, U); A \in \mathcal{P}, A \subset G\}.$$

The following generalization of the celebrated Kolmogorov - Sinaj theorem holds:

Theorem. Let $C = \{C_1, ..., C_n\}$ be a measurable set partition of Ω such that the σ -algebra S is generated by the set $\bigcup_{i=1}^{\infty} U^i(C)$. Then for every fuzzy partition $A = \{g_1, ..., g_k\}$ there holds

$$h(A,U) \le h(C,U) + \int_{\Omega} (\sum_{i=1}^{k} \varphi(g_i)) dP.$$

Of course, the definition has the following defect: If G contains all constant functions, then $h_G(U) = \infty$. This defect is eliminated by the following correction.

2. Hudetz entropy

If $A = \{f_1, ..., f_n\}$ is a fuzzy partition, then we define its Hudetz entropy

$$H^{\flat}(A) = \sum_{i=1}^{k} \varphi(m(f_i)) - m(\sum_{i=1}^{k} \varphi(f_{i-i}))$$
$$h^{\flat}(U) = \lim_{n \to \infty} \frac{1}{n} H^{\flat}(\bigvee_{i=0}^{n-1} U^{i}(A)),$$

and for any $G \subset \mathcal{F}$ we define

$$h^{\flat}_{G}(U) = \sup\{h^{\flat}(A, U); A \subset G, A \in \mathcal{Q}\}$$

where Q is the set of all fuzzy partitions. Then the following theorem holds:

Theorem. Let $(\Omega, \mathcal{S}, P, T)$ be a dynamical system, \mathcal{F} be the set of all functions $f : \Omega \to [0,1]$ measurable with respect to $\mathcal{S}, U : \mathcal{F} \to \mathcal{F}, U(f) = f \circ T$. Let $C \subset G \subset \mathcal{F}$. Then

$$h_G^{\flat}(U) = h^{\flat}(C, U) = h(C, U).$$

3. References

[1] Maličký P., Riečan B.: On the entropy of dynamical systems. In: Proc. Ergodic Theory and Related Topics II. Taubner, Leipzig 1987, 135-138.

[2] Hudetz T.: Quantum topological entropy. In: Quantum Probability and related Topics VIII. World Scientific, Singapore 1993, 237–261.

[3] Riečan B., Neubrunn T.: Integral, Measure, and Ordering. Kluwer, Dordrecht and Ister, Bratislava, 1997.

Slovak Academy o Sciences, Mathematical Institute, Štefánikova 49, SK – 800 00 Bratislava, Slovakia

 $E\text{-}mail \ address: \texttt{riecanQmat.savba.sk}$