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A CLASS OF TESTS ON THE TAIL INDEX USING THE
MODIFIED EXTREME REGRESSION QUANTILES

JAN PICEK AND JANA JUREČKOVÁ

Abstrakt. Jurečková (1999) proposed a class of tests on the Pareto-type tail
index of the distribution of errors in the linear regression model, based on the
extreme regression quantiles. Regarding that there are not many tests on tails
even in the location model, though they would be useful, we construct analogous
tests on the Pareto index in the location model, modifying the i.i.d. observations
into a two-samples model. The proposed tests are based on two extremes of a
splitted sample, and on the empirical distribution functions of their mean. The
main idea behind the tests is that the tails of the test criterion distinguish
sharply between the heavy and light tails of the basic distribution.

The asymptotic null distribution of the test criterion is normal, the tests are
consistent against the Pareto type tails with a larger index as well as against
the exponential tails. The simulation study shows that the tests distinguish the
tails already for moderate samples.
Abstrakt: Jurečková (2000) navrhla třídu test̊u indexu Paretových chvost̊u

pro rozdělení chyb v lineárním regresním modelu. Testy je založeny na extrém-
ních regresních kvantilech. V tomto příspěvku uvažujeme analogické testy pro
model polohy. Simulační studie ukazuje, že testy rozlišují chvosty poměrně dobře
i pro nepříliš rozsáhlé výběry.
Rez�me: �reqkova (2000) predlo�ila klass kriteriev dl� indeksa
Paretogo hvosta v modeli linearno� regressii. Kriterii vyved�ny
na osnove krani�h regressyonnyh kvantilov. V �to� stat~e my kon-
struiruem klass analogiqnyh kriteriev v modeli sdviga. Simuli-
rovany� �t�d pokazyvaet qto rabota�t horoxo to�e dl� nebol~xoe
vyborki.

1. Introduction

If we are interested in the extremal events such as the high flood levels of the
rivers or extreme values of environmental indicators, then we are rather interested
in the tails of the underlying distribution than in its central part. A goodness-of-fit
test would not provide us with a sufficient information on the shape of tails. Our
first step would consist of a decision whether the underlying distribution function
F is light- or heavy-tailed; the next steps would consist of a more precise study of
its shape. The model is semiparametric in its nature, involving an unknown slowly
varying function, besides the real-valued parameters of interest.
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Let Y1, . . . , Yn be independent observations, identically distributed according to
distribution function F (y). We distinguish two broad classes of distributions corre-
sponding to two types of tails of F :

• Exponentially tailed F (type I): for some b > 0 and r ≥ 1, F satisfies

(1.1) lim
a→∞

− log(1− F (a))
bar

= 1 .

• Heavy-tailed F (type II): for some m > 0, F satisfies

(1.2) lim
a→∞

− log(1− F (a))
m log a

= 1 .

A typical example of a distribution of type II is the Pareto distribution with the
distribution function

F (x) = (1− x−m)I[x ≥ 1].
Applying the l’Hospital rule to (1.2) and taking the von Mises condition into account
(see [2], Chapter 3), we get that the distributions of type II satisfy

(1.3) 1− F (x) = x−mL(x), x ∈ R

where L(x) is a function, slowly varying at infinity.
We would like to test the hypothesis:

Hm0 : F is of type II and limx→∞ [x
m0(1− F (x)] ≥ 1

against the alternative

Km0 : the right tail of F is lighter than that of Pareto’s distribution with index m0.

Generally, the problem of identifying the tails is semiparametric in nature, invol-
ving a nuisance slowly varying function.
Jurečková (2000) proposed a class of tests on the Pareto-type tail index of the

distribution of the errors of the regression data, based on the extreme regression
quantiles. Because there are not many tests in the literature, distinguishing between
heavy and light tails even in the case of the i.i.d. observations, we construct ana-
logous tests on the Pareto index in the location model, where we can apply the
test proposed by Jurečková, after transforming the observations Y1, . . . , Yn into two
samples, differing by a shift in location. A similar trick was used by Hájek (1970)
for a construction of a partially adaptive rank test.
Let us modify the observations Y1, . . . , Yn, n = 2ν, in the following way: Fix

∆ > 0 and put

(1.4) Y ∗
in = Yi + cin∆, cin =

{
+1, i = 1, . . . , ν
−1, i = ν + 1, . . . , n.

Hence, Y ∗
1n, . . . , Y

∗
nn follow the linear regression model

(1.5) Y ∗
in = θ + cin∆+ Ui, i = 1, . . . , n

with (p = 2)-dimensional parameter (θ,∆), where the i.i.d. errors Ui have d.f. F
(and θ = 0). Following Portnoy and Jurečková (1999), we shall define the maximal
regression quantile for the model (1.5) as the solution (θ̂, ∆̂) of the minimization

(1.6) θ̂ = min subject to θ̂ + cin(∆̂−∆) ≥ Yi, i = 1, . . . , n.

Solution of this simple minimization takes on the form

(1.7) θ̂ =
Y
(1)
n + Y

(2)
n

2
,
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(1.8) ∆̂ = ∆+
Y
(1)
n − Y

(2)
n

2

where Y (1)
n = max{(Y1, . . . , Yν} and Y

(2)
n = max{Yν+1, . . . , Yn}.

Let us repeat the sample of size n independently N times, or partition the given
data set into N independent samples of sizes n. Split every sample in the above
manner and calculate the extremes of the respective subsamples. The test of Hm0 is
based on the empirical distribution functions of the averaged extremes of the splitted
subsamples. The asymptotic power of the test is equal to 1 against the exponential
tails and the test is consistent against the alternatives of lighter tails. The asymptotic
null distribution of the test criterion is normal.
Another test of Hm0 , based on the subsample extremes, is constructed by the

same authors in [6].
The performance of the tests is illustrated on the simulated data; we see that they

distinguish well the tails even for moderate samples. The proposed test is described
in Section 2 along with the asymptotic null distributions of the test criterion and
with a numerical illustration. The asymptotic null distribution is proved in Section
3 and Section 4 contains some consistency considerations.

2. The test and its numerical illustration

The test criterion for the hypothesis Hm0 is based on the following construction:
Observe N independent samples of the fixed sizes n = 2ν and each of them order

randomly; without loss of generality, let Yj = (Yj1, . . . , Yjn)′, j = 1, . . . , N denote
already the samples after random permutations. Let

θ̂j = 1
2 (Ŷ

(1)
j + Ŷ

(2)
j ),(2.1)

Ŷ
(1)
j = max(Yj1, . . . , Yjν), Ŷ

(2)
j = max(Yj,ν+1, . . . , Yjn), j = 1, . . . , N.

Then (θ̂1, . . . , θ̂N ) is a random sample from distribution F ∗ (say); denote F̂ ∗
N the

corresponding empirical distribution function, i.e.

(2.2) F̂ ∗
N (a) =

1
N

N∑
j=1

I[θ̂j ≤ a].

Put

(2.3) aN,m = 1
2N

1−δ
m n

1
m , 0 < δ < 1, m > 0.

We propose the test with the critical region{
(Y1, . . . ,YN ) : either 1− F̂ ∗

N (aN,m0) = 0

or 1− F̂ ∗
N (aN,m0) > 0 and

Nδ/2
[
− log(1− F̂ ∗

N (aN,m0))− (1− δ) logN
]
≥ Φ−1(1− α)

}(2.4)

for testing Hm0 against Km0 ; Φ is the standard normal d.f. and α ∈ (0, 1) is the
asymptotic significance level. The asymptotic distribution of the test criterion (2.4)
under Hm0 is given in the following theorem:

Theorem 2.1. Let Yj = (Yj1, . . . , Yjn))′, j = 1, . . . , N be independent, rando-
mly ordered samples from a population with distribution function F and density f,
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F (x) < 1, ∀x ∈ IR and F being strictly monotone on the set {x : 0 < F (x) < 1}.
Let θ̂1, . . . , θ̂N be the statistics defined in (2.1).

Then, if xm0(1− F (x))→ 1 as x → ∞,

(2.5) lim
N→∞

Pm0

(
0 < F̂ ∗

N (aN,m0) < 1
)
= 1, aN,m0 =

1
2N

1−δ
m0 n

1
m0 , 0 < δ < 1

and

lim
N→∞

Pm0

{
N δ/2

[
− log(1− F̂ ∗

N (aN,m0))− (1− δ) logN
]
≥ x,

0 < F̂ ∗
N (aN,m0) < 1

}
= 1− Φ(x), x ∈ IR.

(2.6)

The test rejecting Hm0 : 0 < m ≤ m0 provided

(2.7) N δ/2[− log(1− F̂ ∗
N (aN,m0))− (1− δ) logN ] ≥ Φ−1(1− α)

has the asymptotic size α for the whole Hm0 , i.e.

(2.8) lim
N→∞

P
{
N δ/2[− log(1− F̂ ∗

N (aN,m0)) − (1− δ) logN ] ≥ Φ−1(1− α)
}
≤ α

for all F satisfying Hm0 .

Proof: The proof of the theorem is postponed to Section 3.

Let us illustrate the performance of the test on the simulated random samples:
The replications (N=25, N=50 and N=100) of samples with sizes n = 10, n = 20,
n = 50 were simulated 1000 times from the following distributions:

Normal N (0, 1) f(x) = 1√
2π
e−

x2

2 , x ∈ IR

Student tm, m = 2, 5 f(x) = 1√
mB( 12 , m

2 )

(
1 + x2

m

)−(m+1)/2
, x ∈ IR

Pareto m = 1, 3 f(x) = m
xm+1 , x ≥ 1

Cauchy (0, 1) f(x) = 1
π(1+x2) , x ∈ IR.

Notice that limx→∞ xm(1− F (x)) = Am = m
m
2 −1

B
�

m
2 ,

1
2

� for the Student tm.

Tables 1 – 4 give the numbers of non-rejections (among 1000 tests) of Hm0 for
m0 = 1, . . . , 5, for the above distributions of observations, for δ = 0.1 and 0.5, and
for various n a N . The bold digits in the tables mean that Hm0 is satisfied for the
distribution under the simulation.
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Table 1.
Numbers of non-rejections of Hm0 among 1000 cases on level α = 0.05

N=25, n=10

Real distribution δ m0 = 1 m0 = 2 m0 = 3 m0 = 4 m0 = 5 m0 = 6

Normal 0.1 0 0 0 0 1 2
0.5 0 0 0 0 0 0

Student–t2 0.1 35 428 817 952 984 995
0.5 6 424 819 938 970 984

Student–t5 0.1 0 3 42 155 303 440
0.5 0 0 12 63 136 220

Pareto–m=1 0.1 981 1000 1000 1000 1000 1000
0.5 1000 1000 1000 1000 1000 1000

Pareto–m=3 0.1 1 79 384 707 880 947
0.5 0 58 441 778 909 964

Cauchy 0.1 694 992 1000 1000 1000 1000
0.5 819 1000 1000 1000 1000 1000

Table 2.
Numbers of non-rejections of Hm0 among 1000 cases on level α = 0.05

N=25, n=20

Real distribution δ m0 = 1 m0 = 2 m0 = 3 m0 = 4 m0 = 5 m0 = 6

Normal 0.1 0 0 0 0 2 10
0.5 0 0 0 0 2 2

Student–t2 0.1 60 740 987 1000 1000 1000
0.5 76 923 998 1000 1000 1000

Student–t5 0.1 0 5 109 403 670 840
0.5 0 1 138 452 712 847

Pareto–m=1 0.1 1000 1000 1000 1000 1000 1000
0.5 1000 1000 1000 1000 1000 1000

Pareto–m=3 0.1 3 191 697 956 997 1000
0.5 1 345 938 997 1000 1000

Cauchy 0.1 932 1000 1000 1000 1000 1000
0.5 997 1000 1000 1000 1000 1000
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Table 3.
Numbers of non-rejections of Hm0 among 1000 cases on level α = 0.05

N=50, n=20

Real distribution δ m0 = 1 m0 = 2 m0 = 3 m0 = 4 m0 = 5 m0 = 6

Normal 0.1 0 0 0 0 0 3
0.5 0 0 0 0 0 0

Student–t2 0.1 33 733 993 1000 1000 1000
0.5 6 952 1000 1000 1000 1000

Student–t5 0.1 0 1 74 328 642 866
0.5 0 0 52 418 789 930

Pareto–m=1 0.1 1000 1000 1000 1000 1000 1000
0.5 1000 1000 1000 1000 1000 1000

Pareto–m=3 0.1 0 134 660 970 999 1000
0.5 0 168 962 999 1000 1000

Cauchy 0.1 924 1000 1000 1000 1000 1000
0.5 999 1000 1000 1000 1000 1000

Table 4.
Numbers of non-rejections of Hm0 among 1000 cases on level α = 0.05

N=100, n=50

Real distribution δ m0 = 1 m0 = 2 m0 = 3 m0 = 4 m0 = 5 m0 = 6

Normal 0.1 0 0 0 0 0 1
0.5 0 0 0 0 0 0

Student–t2 0.1 43 980 1000 1000 1000 1000
0.5 24 1000 1000 1000 1000 1000

Student–t5 0.1 0 4 129 650 976 1000
0.5 0 0 439 999 1000 1000

Pareto–m=1 0.1 1000 1000 1000 1000 1000 1000
0.5 1000 1000 1000 1000 1000 1000

Pareto–m=3 0.1 1 236 959 1000 1000 1000
0.5 0 693 1000 1000 1000 1000

Cauchy 0.1 1000 1000 1000 1000 1000 1000
0.5 1000 1000 1000 1000 1000 1000
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3. Proof of the asymptotic null distribution

Let Y1, . . . , Yn be randomly ordered observations, n = 2ν and let θ̂ be defined in
(1.7). Define the measure of the tail behavior of θ̂ as the function

(3.2) B∗(a) =
− logPθ

(
1
2 (θ̂ − θ) ≥ a

)
− log(1− F (a))

=
− logP0(Y (1) + Y (2) ≥ 4a)

− log(1− F (a))
, a ≥ 0.

Similar measure was considered in [4] and later in [8] in the context of extreme
regression quantiles , to which θ̂ closely relates. We shall first show that the tail
behavior of θ̂ (1.7) distinguishes sharply between the two types of tails, while the
extreme of the whole sample is insensitive to the tails.

Lemma 3.1. Assume that the distribution function F of Yi−θ, i = 1, . . . , n satisfies
F (x) < 1, x ∈ IR and is strictly increasing on the set {x : 0 < F (x) < 1}. Then

2r ≤ lima→∞B∗(a) ≤ lima→∞B∗(a) ≤ 2r+1 for F of type I(3.3)

lim
a→∞

B∗(a) = 1 for F of type II.

On the other hand,

(3.4) lim
a→∞

− logP0 (max(Y1, . . . , Yn) ≥ a)
− log(1− F (a))

= 1

for F of both types I and II.

Proof. We have

(3.5) P0(Y (1) + Y (2) > 4a) ≤ P0(Y (1) > 2a) + P0(Y (2) > 2a) = 2(1− F ν(2a)),

hence

lim
a→∞

− log P0(Y (1) + Y (2) > 4a)
− log (1− F (a))

≥ lim
a→∞

− log (1− F (2a))
− log (1− F (a))

.(3.6)

On the other hand,

(3.7) P0(Y (1) + Y (2) > 4a) ≥ P0(Y (1) > 2a) P0(Y (2) > 2a) = (1− F ν(2a))2,

hence

lim
a→∞

− log P0(Y (1) + Y (2) > 4a)
− log (1− F (a))

≤ lim
a→∞

−2 log (1− F (2a))
− log (1− F (a))

.(3.8)

and that leads to (3.3) for F of type I and II, respectively.
For the maximum of the whole sample we get

(3.9) P0

(
max
1≤i≤n

Yi ≥ a

)
= 1− Fn(a) = (1− F (a))(1 + F (a) + . . .+ Fn−1(a))

hence

1− F (a) ≤ P0

(
max
1≤i≤n

Yi ≥ a

)
≤ n(1− F (a)),

what implies (3.4).

Remark. Lemma 3.1 shows that the tail behavior of the sample maximum does not
distinguish between types I and II.

Proof of Theorem 2.1. Let first F have exactly the Pareto tail with index m0, i.e.

(3.10) lim
x→∞

[xm0(1− F (x))] = 1.
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Then, because θ̂1 is an average of two extremes, it follows e.g. from Lemma 1.3.1 in
[3] (see also Lemma A3.26 in [2]) that d.f. F ∗ satisfies

(3.11) lim
x→∞

[xm0(1− F ∗(x))] =
n

2m0
.

(θ̂1, . . . , θ̂N) is a random sample from d.f. F ∗ and F ∗ belongs to the maximum
domain of attraction of the Fréchet distribution with the distribution function

(3.12) Φm0(x) = exp

{
− 1
xm0

}
I[x > 0]

hence,

(3.13) P
(
ξ−1
N θ̂1 ≤ x

)
→ Φm0(x)

as N → ∞ with ξN satisfying limN→∞[N(1−F ∗(ξN ))] = 1; thus ξN = 1
2 (nN)

1/m0 .

Denote θ̂(N) = max{θ̂j , j = 1, . . . , N} and θ̂(1) = min{θ̂j , j = 1, . . . , N}. Then
(3.13) implies that

(3.14) Pm

(
θ̂(N) < aN,m0

)
= Pm

(
ξ−1
N θ̂(N) ≤ 2N−δ/m0

)
→ 0 as N → ∞

for aN,m0 defined in (2.3). Similarly we conclude that Pm

(
θ̂(1) > aN,m0

)
→ 0 as

N → ∞. This further implies that (2.5) holds provided F has Pareto tails with index
m0.

If 1− F̂ ∗
N (aN,m0) > 0, then

N1/2

(
1− F ∗(aN,m0)
F ∗(aN,m0)

)1/2

{− log(1− F̂ ∗
N (aN,m0)) + log(1− F ∗(aN,m0))}

= N1/2[F ∗(aN,m0)(1− F ∗(aN,m0))]
−1/2[F̂ ∗

N (aN,m0)− F ∗(aN,m0)]

+ Op(N−δ/2).

(3.15)

If we apply Theorem 4, Chapter VIII, in [7] (Cramér type large deviations) to
the triangular array (I[θ̂1 ≤ 2aN,m0]−F ∗(aN,m0), . . . , I[θ̂N ≤ 2aN,m0]−F ∗(aN,m0)),
N = 1, 2, . . . and take (2.5) into account, we conclude that, given ε > 0, there exists
N0 such that, for N > N0,

Pm0

{
N1/2

(
1− F ∗(aN,m0)
F ∗(aN,m0)

)1/2 [
− log(1− F̂ ∗

N (aN,m0))

+ log(1− F ∗(aN,m0))
]
≥ x

}

≤ Pm0

{
N1/2

(
1− F ∗(aN,m0)
F ∗(aN,m0)

)1/2 [
− log(1− F̂ ∗

N (aN,m0))

+ log(1− F ∗(aN,m0))
]
≥ x, 1− F ∗(aN,m0) > 0

}
+ ε

= [1− Φ(x)](1 + o(1)) + ε

(3.16)

for x = o
(
N1/6

)
. Hence, regarding (3.11), we conclude

Pm0

{
N δ/2[− log(1− F̂ ∗

N (aN,m0))− (1− δ) logN ] ≥ x, 1− F̂ ∗
N (aN,m0) > 0

}

→ (1− Φ(x)) as N → ∞, x ∈ IR
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and we arrive at (2.6). Further,

(3.17) Pm0

{
N δ/2[− log(1− F̂ ∗

N (aN,m0))− (1− δ) logN ] ≥ Φ−1(1− α)
}
→ α

as N → ∞. If F has a heavier tail than Pareto with index m0, then 1 − F ∗
N is

ultimately stochastically larger than in the exact Pareto case, hence

P
{
N δ/2

[
− log(1− F̂ ∗

N (aN,m0))− (1− δ) logN
]
≥ Φ−1(1− α)

}

≤ Pm0

{
N δ/2

[
− log(1− F̂ ∗

N (aN,m0))− (1− δ) logN
]
≥ Φ−1(1− α)

}
→ α

(3.18)

as N → ∞; this means that the test (2.4) is of asymptotic size α for the whole
hypothesis Hm0 .

4. Consistency of the test

If F has a lighter right tail than Pareto with index m0, then 1− F̂ ∗
N is ultimately

stochastically smaller than in the exact Pareto case and it follows from (3.17) that

limn→∞P
{
N δ/2

[
− log(1− F̂ ∗

N (aN,m0))− (1− δ) logN
]
≥ Φ−1(1− α)

}
≥ α,

(4.1)

hence the test is asymptotically unbiased against alternative Km0 .
Let now F be of type II (1.2) with index m > m0; let F ∗ be the corresponding

distribution function of θ̂. Then Lemma 3.1 implies that, given an ε > 0, there exists
N0 such that, for N > N0,

(4.2) a
−m(1+ε)
N,m0

≤ 1− F ∗(aN,m0) ≤ a
−m(1−ε)
N,m0

If 1 − F̂ ∗
N (aN,m0) = 0, we reject the hypothesis. Let 1 − F̂ ∗

N (aN,m0) > 0; then it
follows from [1] that there exists a Brownian bridge BN depending on θ̂1, . . . , θ̂N

such that for N > N0

N δ/2
[
− log(1− F̂ ∗

N (aN,m0))− (1− δ) logN
]

= Nδ/2
[
− log

(1− F̂ ∗
N (aN,m0))

1− F ∗(aN,m0)
− 1 + 1

)]

+N δ/2
(− log(1− F ∗(aN,m0))

m log aN,m0

m log aN,m0 − (1− δ) logN
)

≥ N−1−δ
2

∣∣∣BN (F ∗(aN,m0))
∣∣∣am(1−ε)

N,m0

+ (1− δ)N δ/2 logN

(
(1− ε)

m

m0
− 1

)
+Op(N

−δ/2)

(4.3)

hence

(4.4) P
{
N δ/2

[
− log(1− F̂ ∗

N (aN,m0))− (1− δ) logN
]
≥ Φ−1(1− α)

}
→ 1

as N → ∞, and we reject Hm0 with probability tending to 1.



226 Jan Picek and Jana Jurečková

Reference
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