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REGRESSION MODELS FOR LONGITUDINAL DATA

MARTINA ORSAKOVA

ABSTRACT. V clanku referuji vlastnosti parametrického odhadu v regresnim
modelu Z¥ = m(fo,X;(TF)) + ¥, kde TF piedstavuje cas k-tého pozorovani
vysvétlované proménné Z u i-tého subjektu. Obecné mnohorozmérny proces
kovaridt X;(s) = (Xi(l)(s), ...,Xi(d)(s)) zdvisi na udélostech do ¢asu s, tj. na
{(Z f,Ti’“ )k - Tik < s}. Odhad nezndmych parametri 6p je zalozen na metodé
nejmensich vazenych ¢tvercu.

Pesroms. B pabore pedepupyro rauecTBa mapaMeTpuUdeCcKOro
OIIEHMBAHUSA B PErPECCUBHOMN Momenn ZF = m(0, X (TF)) + ¥, rne
Tik €CThL BpeMs k-HADIyAeHUs 3aBUCUMON MEpPEeMEHHUU Z UL i-
cybberra. Boobime MHOrOMEepHONW IpOIece He3aBUCUMDIX Tepe-
MeHul X,(s) = (Xi(l)(s),...,Xi(d)(s)) 3aBUCUT OT COOLITUS IO Bpe-
MeHU s, T.e. OT {(ZF,TF)|k : TF < s}. OueHUBaHMe HEM3BECT-
HBIX ITapaMeTPOB #y OCHOBAHO HAa MeETOJe HAMMEHLIINY B3BII-
€HLIX KBAIPATOB.

1. INTRODUCTION

Consider the triples (T, ZF, X;(TF)), where TF is the time of the k-th observa-
tions of i-th subject, ZF is dependent variable and X;(TF) is a d-dimensional process
of covariates: X;(s) = (Xi(l)(s), Xi(Q) (8)y ey Xi(d)(s)). We assume that we have n i.i.d.
replicates from a generic model. The T;’s can be exposed to different censoring sys-
tems. The covariates X;(s) can depend on the events prior to time s, i.e. on the
{(ZF, TF)|k : TF < s}. The process X;(s) may include quantitative as well as quali-
tative variables, and could include indicators of sex, treatment group, geographical
regions or age, and various other continuous measurements. In this paper we inves-
tigate properties of a particular estimator for the regression parameters in the model

Zf = m(00, Xi(T})) + 7

2. PARAMETRIC MODEL

Assume that m(.) is a regression function - known and (sufficiently) smooth func-
tion of unknown regression parameters 6y :

(1) ZF =m0, Xi(T})) + &7,

k

where ¢ = 1,.n, k = 1,.N/, ¢/ is a noise. The process N; counts number of

observations for i-th subject in [0,¢], i.e. Nf = I(TF <t).
%
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N
2.1. Assumptions. Define R = Y ZF and a filtration
k=1

Fi=0(R,Ni:s<t, i=1,.n)V A,

the history of the process Ri and N for i = 1,..n. A is assumed to be a o-algebra
independent of o(R{, N/ : s < t, i = 1,..n), and represents knowledge prior to
time 0. It is assumed that no two of the counting processes N} jump at the same
time (almost surely). Let X;(s) is predictable process with respect to the filtration
Fs and is ”cadlag” - the right continuous with left limits process. The process N; has
a random intensity A{ > 0, which is ”cadlag”. One particular form for the intensity
is Aalen’s multiplicative model: \i = a(t)Y}!, where (.) is deterministic function
and Y} is F;-predictable process. In practice, censoring indicators play the role of
Y}, i.e. the variable is 1 if the i-th subject is at I“ibk and 0 otherwise.
The conditional distribution of the noise terms 5 is denoted

(2) Fu(2) = PeXH < 2|7, TV = ),

and it is assumed that 52“ have conditional mean and variance given by

N+1| Ni41

3) E(e Fu, T; "7 =5) =0,

Ni41y2 Ni41
(4) E((e; " PIFu T = 5) = 0*(Xi(s)),
where ¢2(.) is deterministic, continuous and bounded function.

2.2. Estimation. Let B denote the Borel o-field on R. For A € B, define the
counting process

(5) Ni(A) =Y 1(ZF € AT <),

that counts the number of observations of "size-A” in the time interval [0, ¢] for the
i-th subject, and the associated marked point process P*(ds x dz) : P*([0,s] x A) =
Ni(A). Note the notation

//Hi(s,z)Pi(ds x dz) =Y Hi(T}, ZH) (T} < t).
0 k

Our estimator § of 6, is based on the conditional weighted least squares. The
objective function is

n N
(© L(0,) = 5= 373 (2F =m0, X (TR W (,(T1),

i=1 k=1

where W(.) is some weight function independent of §. Denote
Hi(6,5,2) = 3 (= — m(®, K:(s) W (i(s)

and (6) can be rewritten as

(M) li/t/Hz(?ssz(dsxdz)

i=1 0

3
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Denote U(6,t) = ((%)L(@,t})k:17,.d and I(6,t) = ((#;‘%)L(H, t))jk=1,.4- The
estimator @ is defined as a solution to the equations:
(8) Uo,t)=0.

Such a 6 does not necessarily minimize L(6,t), it may not be a consistent estimator
and may not exist. However, if we assume that there exists a unique maximum for
L(0,t), the estimator is consistent.

Before giving the asymptotic results about the estimator of 6y, some further con-
ditions must be stated. We discus the specific model where the processes R}, ...R?
are assumed to be independent and identically distributed. These assumptions could
be weakened, for more general results see [6].

ASSUMPTION A
Assume that m(0,z) is three times continuously differentiable in a neighborhood
B(6y,r) around 6.

ASSUMPTION B ,
Let further W(.), E([ Alds) and the derivatives of m(.,.) in a neighborhood B(6p, r)
0

are bounded.

ASSUMPTION C
The processes

g = dijkmwo,Xxs))%jm(eo,Xxs))W(Xi(s))Aé
and p p
Q= d—gkm(@mXz’(s))dfojm(emXi(S))UQ(Xz'(S))WQ(Xi(s))Ai
satisfy

E| sup |¢'] | <oo, E| sup |Q] < o0
s€[0,t] s€[0,t]
foralli=1,..n,and j,k =1,...d.
Assume further that there exist non-negative definitive symmetric matrices X7, 3y

such that ¥; = (E(ft qids)) and Xy = (E(ft Qids))
0 0

Ji:k=1,...d Ji:k=1,...d

The following theorems give the asymptotic results about the estimator 6. All
proofs can be found in [6].

Theorem 1:
Under the assumptions A-C there exists a consistent solution to U(6,t) = 0, that
provides a local minimum of L(6,t) with probability tending to one. O

Theorem 2: R
Under the assumptions A-C and with € a consistent solution of U(6,t) = 0, one has

Vil — 6,) 25 N(0,57 'S5 Y.
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Further — ,t and Sy prov1de consistent estimates of ¥; and Xy respectively,

)
where Sy = 1 of H;(8,s z))(%kHi(é),s,z))Pl(ds X dz))

s

=1

Ji:k=1,...d
U

The following result is of interest for the purpose of testing a simple hypothesis

H : 0 = 0y against the composite alternative G : 6 # 6. Let Wy(X) denote the

Wishart distribution corresponding to a d-dimensional normal distribution N (0, X).
Theorem 3:

Under the hypothesis H and under the assumptions A-C and if 6 is a consistent

solution of U(6,t) = 0 one has

n(L(0,t) — (0o, 1)) — W, ( ! 2;1/2EUE;1/2) |

O

When the conditional variance o2(.) of the error term 5{ is a known function, a na-
tural choice of the weight function is W(.) = 021(.).

Theorem 4:

The asymptotic variance of \/ﬁ(é —6)p) is minimized by choosing the weight function
W (.) as the inverse of the conditional variance, (,%('); that is X7 < X719, %!

where £ is the asymptotic variance of \/n(f — ) for the choice W(.) = 021(.).

O

The conditional variance, o%(.) is usually unknown and in some cases one can replace
02(.) by a uniformly consistent estimator, 62(.), and still obtain the theorems of
this section. In the case of Aalen’s multiplicative intensity model, Sheike in [6]
proposed a non-parametric estimator of o%(.), which is uniformly consistent under

some regularity conditions. An estimator is 62(y) = ((yy)) where
N} i
. L m 52 . 1 o JH(TY)
Vi) = D E ) 5K @ - KT b
i=1 j=1 T

o) = —Ziﬂ (4 — Xl >,b>Jﬁ”).

i=1 j=1

K(.) is a d-dimensional kernel, b = (by,...,bq) is a bandwidth, 8 = b;...by and
Ji(s) = I(Y? > 0). The kernel estimation of the regression function (see [7]) is
defined as

N}

53 ARl —x(T).0)

m(y) =

n :;7? .
55 3% Kty —%(17).0)

Sheike in [6] proved that under some ”technical assumptions” and provided 62 is
a uniformly consistent estimator of the o2, theorems 1-3 remain true for W(.) = 25.
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3. SIMULATION STUDY

We studied the properties of our estimator in the following limited simulation
study. We simulated a two-dimensional longitudinal data. Suppose the covariate
process X;(T7) = (X;(T}),T/), where X; is an additional covariate for the i-th
individual and Tij is the j-th random observation time of i-th individual.

The covariate processes X; were generated from the random variables with den-
sity function % + & for x € [0,1]. For each individual the observation times were
generated from the Poisson process over the unit time period of [0, 1] with parameter
A, where A = 10, if the previous response value Zij_1 < 0.8, and A = 20 otherwise.
Notice that the random observation time depends on the value of the previous mea-
surement. The response values were generated as Z] = 01 + 6 - T/ + 03 - X + ¢/,
where 61 = 0.2, 5 = 0.8 and A3 = 0.4 and 5{ has a normal distribution with mean
zero and standard deviation 0.3. This linear regression model satisfies needed as-
sumptions. We generate 80 individuals in the sample. On the average there are
about 13 observations for each individual. Together we have got 1068 observations.

The following figure provides a plot of a non-parametric estimate of the regression
function. The estimate of the conditional variance of the noise term o2(.) is plotted

in the second figure. We used Gaussian kernel with bandwidth b; = by = 0.002.

The kernel estimation of regression function The kernel estimation of variance of error term

s’

The estimation of 8y is done for two different choices of the weight function. The
first weight function examined is W(.) = 1. For this choice the estimate of 6y and
the estimate of their standard errors and correlations are given in the table:
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Estimates | Standard errors Estimated correlations
i éi Vvar 0; 1 2 3
1 0.1912 0.0026 1 -0.6838 0.0285
2 0.8158 0.0034 - 1 -0.6401
3 0.3799 0.0034 - - 1

The second choice of the weight function is W(.) =

L
62

(.), where 62%(.) is the

Sheike’s estimate of 02(.). The weighted estimate of 6, standard errors and corre-
lations are given in this table:

Estimates | Standard errors Estimated correlations
) 91 Voar 6; 1 2 3
1 0.2019 0.0021 1 -0.6585 0.0123
2 0.8125 0.0029 - 1 -0.6397
3 0.3684 0.0028 - - 1

The last pictures show the estimated parameters and the distance of the estimated
parameter and its true value for different sample size. The estimate was computed
for the choice of weights W(.) = 1.
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4. SOME REMARKS

The Sheike’s methods mesh well with the modeling in terms of the conditional
distribution of the current observation given the past. When there is a strong time
dependence, the conditional least square methods seem preferable to the generali-
zed estimation equations. It was mentioned that the optimal choice of the weight
function is the inverse of the conditional variance. Some caution has to be taken in
choosing the smoothing parameters b. The appropriate choice of the bandwidth en-
sures that the regression function estimates are not too unstable and at the same time
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do not introduce too much bias. A small difficulty arises from our non-parametric
estimator: the bias is more severe at the edges of the data and therefore one must
limit the results to nonedge areas.
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