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REGRESSION MODELS FOR LONGITUDINAL DATA

MARTINA ORSÁKOVÁ

Abstract. V článku referuji vlastnosti parametrického odhadu v regresńım
modelu Zk

i = m(θ0,Xi(T
k
i )) + εk

i , kde T k
i představuje čas k-tého pozorováńı

vysvětlované proměnné Z u i-tého subjektu. Obecně mnohorozměrný proces

kovariát Xi(s) = (X
(1)
i (s), ..., X

(d)
i (s)) záviśı na událostech do času s, tj. na

{(Zk
i , T k

i )|k : T k
i < s}. Odhad neznámých parametr̊u θ0 je založen na metodě

nejmenš́ıch vážených čtverc̊u.

Rez�m�. V rabote referiru� kaqestva parametriqeskogo
ocenivani� v regressivno� modeli Zk

i = m(θ0,Xi(T
k
i )) + εk

i , gde
T k

i est� vrem� k-nabludeni� zavisimo� peremennii Z dl� i-
sub�ekta. Voobwe mnogomerno� process nezavisimyh pere-
meni� Xi(s) = (X

(1)
i (s), ...,X

(d)
i (s)) zavisit ot sobyti� do vre-

meni s, t.e. ot {(Zk
i , T k

i )|k : T k
i < s}. Ocenivanie neizvest-

nyh parametrov θ0 osnovano na metode naimen�xiq vzvx-
enyh kvadratov.

1. Introduction

Consider the triples (T k
i , Z

k
i ,Xi(T k

i )), where T
k
i is the time of the k-th observa-

tions of i-th subject, Zk
i is dependent variable and Xi(T k

i ) is a d-dimensional process
of covariates: Xi(s) = (X

(1)
i (s), X(2)

i (s), ..., X(d)
i (s)).We assume that we have n i.i.d.

replicates from a generic model. The Ti’s can be exposed to different censoring sys-
tems. The covariates Xi(s) can depend on the events prior to time s, i.e. on the
{(Zk

i , T
k
i )|k : T k

i < s}. The process Xi(s) may include quantitative as well as quali-
tative variables, and could include indicators of sex, treatment group, geographical
regions or age, and various other continuous measurements. In this paper we inves-
tigate properties of a particular estimator for the regression parameters in the model
Zk

i = m(θ0,Xi(T k
i )) + εk

i .

2. Parametric model

Assume that m(.) is a regression function - known and (sufficiently) smooth func-
tion of unknown regression parameters θ0 :

(1) Zk
i = m(θ0,Xi(T k

i )) + εk
i ,

where i = 1, ..n, k = 1, ..N i
t , εk

i is a noise. The process N
i
t counts number of

observations for i-th subject in [0, t], i.e. N i
t =

∑
k

I(T k
i ≤ t).
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2.1. Assumptions. Define Ri
t =

Ni
t∑

k=1

Zk
i and a filtration

Ft = σ(Ri
s, N

i
s : s ≤ t, i = 1, ..n) ∨ A,

the history of the process Ri
t and N i

t for i = 1, ..n. A is assumed to be a σ-algebra
independent of σ(Ri

s, N
i
s : s ≤ t, i = 1, ..n), and represents knowledge prior to

time 0. It is assumed that no two of the counting processes N i
t jump at the same

time (almost surely). Let Xi(s) is predictable process with respect to the filtration
Fs and is ”cadlag” - the right continuous with left limits process. The processN i

t has
a random intensity λi

t ≥ 0, which is ”cadlag”. One particular form for the intensity
is Aalen’s multiplicative model: λi

t = α(t)Y i
t , where α(.) is deterministic function

and Y i
t is Ft-predictable process. In practice, censoring indicators play the role of

Y i
t , i.e. the variable is 1 if the i-th subject is at risk and 0 otherwise.
The conditional distribution of the noise terms εk

i is denoted

(2) Fs(z) = P (εNi
u+1

i ≤ z|Fu, T
Ni

u+1
i = s),

and it is assumed that εk
i have conditional mean and variance given by

(3) E(εNi
u+1

i |Fu, T
Ni

u+1
i = s) = 0,

(4) E((εNi
u+1

i )2|Fu, T
Ni

u+1
i = s) = σ2(Xi(s)),

where σ2(.) is deterministic, continuous and bounded function.

2.2. Estimation. Let B denote the Borel σ-field on R. For A ∈ B, define the
counting process

(5) N i
s(A) =

∑
k

I(Zk
i ∈ A)I(T k

i ≤ s),

that counts the number of observations of ”size-A” in the time interval [0, t] for the
i-th subject, and the associated marked point process P i(ds× dz) : P i([0, s]×A) =
N i

s(A). Note the notation
t∫

0

∫
Hi(s, z)P i(ds× dz) =

∑
k

Hi(T k
i , Z

k
i )I(T

k
i ≤ t).

Our estimator θ̂ of θ0 is based on the conditional weighted least squares. The
objective function is

(6) L(θ, t) =
1
2n

n∑
i=1

Ni
t∑

k=1

(Zk
i −m(θ,Xi(T k

i ))
2W (Xi(T k

i )),

where W (.) is some weight function independent of θ. Denote

Hi(θ, s, z) =
1
2
(z −m(θ,Xi(s))2W (Xi(s))

and (6) can be rewritten as

(7) L(θ, t) =
1
n

n∑
i=1

t∫
0

∫
Hi(θ, s, z)P i(ds× dz).
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Denote U(θ, t) = (( d
dθk
)L(θ, t))k=1,..d and I(θ, t) = (( d2

dθjdθk
)L(θ, t))j,k=1,..d. The

estimator θ̂ is defined as a solution to the equations:

(8) U(θ, t) = 0.

Such a θ̂ does not necessarily minimize L(θ, t), it may not be a consistent estimator
and may not exist. However, if we assume that there exists a unique maximum for
L(θ, t), the estimator is consistent.

Before giving the asymptotic results about the estimator of θ0, some further con-
ditions must be stated. We discus the specific model where the processes R1

s, ...R
n
s

are assumed to be independent and identically distributed. These assumptions could
be weakened, for more general results see [6].
ASSUMPTION A
Assume that m(θ, x) is three times continuously differentiable in a neighborhood
B(θ0, r) around θ0.

ASSUMPTION B

Let furtherW (.), E(
t∫
0

λi
sds) and the derivatives of m(., .) in a neighborhood B(θ0, r)

are bounded.

ASSUMPTION C
The processes

qi
s :=

d

dθk
m(θ0,Xi(s))

d

dθj
m(θ0,Xi(s))W (Xi(s))λi

s

and

Qi
s :=

d

dθk
m(θ0,Xi(s))

d

dθj
m(θ0,Xi(s))σ2(Xi(s))W 2(Xi(s))λi

s

satisfy

E

(
sup

s∈[0,t]

|qi
s|
)
< ∞, E

(
sup

s∈[0,t]

|Qi
s|
)
< ∞

for all i = 1, ...n, and j, k = 1, ...d.
Assume further that there exist non-negative definitive symmetric matrices ΣI , ΣU

such that ΣI =
(
E(

t∫
0

qi
sds)

)
j,k=1,...d

and ΣU =
(
E(

t∫
0

Qi
sds)

)
j,k=1,...d

.

The following theorems give the asymptotic results about the estimator θ̂. All
proofs can be found in [6].

Theorem 1:
Under the assumptions A-C there exists a consistent solution to U(θ, t) = 0, that
provides a local minimum of L(θ, t) with probability tending to one. �
Theorem 2:
Under the assumptions A-C and with θ̂ a consistent solution of U(θ, t) = 0, one has

√
n(θ̂ − θ0)

D−−→ N(0,Σ−1
I ΣUΣ−1

I ).
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Further −I(θ̂, t) and Σ̂U provide consistent estimates of ΣI and ΣU respectively,

where Σ̂U :=
(

1
n

n∑
i=1

t∫
0

∫
( d

dθj
Hi(θ̂, s, z))( d

dθk
Hi(θ̂, s, z))P i(ds× dz)

)
j,k=1,...d

.

�

The following result is of interest for the purpose of testing a simple hypothesis
H : θ = θ0 against the composite alternative G : θ �= θ0. Let Wd(Σ) denote the
Wishart distribution corresponding to a d-dimensional normal distribution N(0,Σ).

Theorem 3:
Under the hypothesis H and under the assumptions A-C and if θ̂ is a consistent
solution of U(θ, t) = 0 one has

n(L(θ̂, t)− L(θ0, t))
D−−→ Wd

(
1
2
Σ−1/2

I ΣUΣ
−1/2
I

)
.

�

When the conditional variance σ2(.) of the error term εj
i is a known function, a na-

tural choice of the weight function is W (.) = 1
σ2(.) .

Theorem 4:
The asymptotic variance of

√
n(θ̂−θ0) is minimized by choosing the weight function

W (.) as the inverse of the conditional variance, 1
σ2(.) ; that is Σ

opt ≤ Σ−1
I ΣUΣ−1

I ,

where Σopt is the asymptotic variance of
√
n(θ̂ − θ0) for the choice W (.) = 1

σ2(.)
.

�

The conditional variance, σ2(.) is usually unknown and in some cases one can replace
σ2(.) by a uniformly consistent estimator, σ̂2(.), and still obtain the theorems of
this section. In the case of Aalen’s multiplicative intensity model, Sheike in [6]
proposed a non-parametric estimator of σ2(.), which is uniformly consistent under
some regularity conditions. An estimator is σ̂2(y) = V̂ (y)

ô(y) , where

V̂ (y) =
1
n

n∑
i=1

Ni
t∑

j=1

(Zj
i

2 − (m̂(y))2) 1
β
K(y − Xi(T

j
i ), b)

J i(T j
i )

Y i
T j

i

,

ô(y) =
1
n

n∑
i=1

Ni
t∑

j=1

1
β
K(y − Xi(T

j
i ), b)

J i(T j
i )

Y i
T j

i

.

K(.) is a d-dimensional kernel, b = (b1, ..., bd) is a bandwidth, β = b1...bd and
J i(s) = I(Y i

s > 0). The kernel estimation of the regression function (see [7]) is
defined as

m̂(y) =

n∑
i=1

Ni
t∑

j=1

Zj
i K(y − Xi(T

j
i ), b)

n∑
i=1

Ni
t∑

j=1

K(y − Xi(T
j
i ), b)

.

Sheike in [6] proved that under some ”technical assumptions” and provided σ̂2 is
a uniformly consistent estimator of the σ2, theorems 1-3 remain true for W (.) = 1

σ̂2 .
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3. Simulation study

We studied the properties of our estimator in the following limited simulation
study. We simulated a two-dimensional longitudinal data. Suppose the covariate
process Xi(T

j
i ) = (Xi(T

j
i ), T

j
i ), where Xi is an additional covariate for the i-th

individual and T j
i is the j-th random observation time of i-th individual.

The covariate processes Xi were generated from the random variables with den-
sity function 5

6 +
x
3 for x ∈ [0, 1]. For each individual the observation times were

generated from the Poisson process over the unit time period of [0, 1] with parameter
λ, where λ = 10, if the previous response value Zj−1

i < 0.8, and λ = 20 otherwise.
Notice that the random observation time depends on the value of the previous mea-
surement. The response values were generated as Zj

i = θ1 + θ2 · T j
i + θ3 ·Xj

i + εj
i ,

where θ1 = 0.2, θ2 = 0.8 and θ3 = 0.4 and εj
i has a normal distribution with mean

zero and standard deviation 0.3. This linear regression model satisfies needed as-
sumptions. We generate 80 individuals in the sample. On the average there are
about 13 observations for each individual. Together we have got 1068 observations.
The following figure provides a plot of a non-parametric estimate of the regression

function. The estimate of the conditional variance of the noise term σ2(.) is plotted
in the second figure. We used Gaussian kernel with bandwidth b1 = b2 = 0.002.

The estimation of θ0 is done for two different choices of the weight function. The
first weight function examined is W (.) ≡ 1. For this choice the estimate of θ0 and
the estimate of their standard errors and correlations are given in the table:
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Estimates Standard errors Estimated correlations
i θ̂i

√
var θi 1 2 3

1 0.1912 0.0026 1 -0.6838 0.0285
2 0.8158 0.0034 - 1 -0.6401
3 0.3799 0.0034 - - 1

The second choice of the weight function is W (.) = 1
σ̂2 (.), where σ̂2(.) is the

Sheike’s estimate of σ2(.). The weighted estimate of θ0, standard errors and corre-
lations are given in this table:

Estimates Standard errors Estimated correlations
i θ̂i

√
var θi 1 2 3

1 0.2019 0.0021 1 -0.6585 0.0123
2 0.8125 0.0029 - 1 -0.6397
3 0.3684 0.0028 - - 1

The last pictures show the estimated parameters and the distance of the estimated
parameter and its true value for different sample size. The estimate was computed
for the choice of weights W (.) ≡ 1.
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4. Some remarks

The Sheike’s methods mesh well with the modeling in terms of the conditional
distribution of the current observation given the past. When there is a strong time
dependence, the conditional least square methods seem preferable to the generali-
zed estimation equations. It was mentioned that the optimal choice of the weight
function is the inverse of the conditional variance. Some caution has to be taken in
choosing the smoothing parameters b. The appropriate choice of the bandwidth en-
sures that the regression function estimates are not too unstable and at the same time
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do not introduce too much bias. A small difficulty arises from our non-parametric
estimator: the bias is more severe at the edges of the data and therefore one must
limit the results to nonedge areas.
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