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RCA(1) MODEL WITH HETEROSCEDASTICITY

HANA JANEČKOVÁ

Abstract. The paper is concerned with a zero mean stochastic process {Xt}
that follows RCA(1) model of the form Xt = btXt−1 + Yt. It is supposed that
the process of random coefficients {bt} consists of independent random variables
with constant expectation β and the second moment σ2

b , while the error process
{Yt} of independent random variables is permitted to be heteroscedastic. In the
paper there are presented strong consistency and asymptotic normality of OLS
and WLS estimators of the unknown parameter β. All these results are then

generalized to the case of a non-zero mean process with unknown expectation.
In the last part some simulations are presented.
Abstrakt. V �to$i stat~e my sosredotoqim vnimanie na processe av-

toregressii pervogo por�dka so sluqa$inym parametrom. �tot prot-

sess imeet vid Xt = btXt−1 + Yt. Snaqala my predpolagaem, qto Xt

ime�t nulevye srednie znaqeni�. Process sluqa$inyh parametrov

{bt} sostoit iz posledovatel~nosti nezavisimyh sluqa$inyh peremen-

nyh so srednim znaqeniem β i posto�nno$i dispersie$i σ2
b , poka disper-

sii xuma Yt zavis�t ot t. V stat~e my predstavl�em asimptotiqeskie

svo$istva ocenok parametra β ispol~zu� metody naimen~xih kvadra-

tov i vzvexennyh naimen~xih kvadratov. Vse rezul~taty obobweny

dl� processa so srednim znaqeniem µ i dobavleny simul�ci�mi.

1. Introduction

Random coefficient autoregressive models (RCA), which were firstly introduced
by Anděl in [1], are natural generalization of AR models . Well-arranged review of
results for homoscedastic RCA models is given in [10]. Through the time a lot of
generalization of these basic models were studied. This paper is focused on the case
when the disturbances in the RCA(1) model consist of independent random variables
with heteroscedastic variances. For this model strong consistency and asymptotic
normality of two types of estimates of parameter β are proved.

In a literature it can be found several papers in which asymptotic properties of
estimators of unknown parameter β are studied in closely related models but none of
them concerns exactly with this case. Weak consistency in heteroscedastic AR pro-
cesses with independent errors is presented in [12]. Heteroscedastic AR model with
martingale difference errors are studied for example in [11], [3]. While in the former
one asymptotic normality is proved, in the latter one rate of convergence to normal
distribution is moreover given. Further, in [9] generally explosive heteroscedastic
AR processes are discussed. Fixed AR models with more general structure of het-
eroscedastic disturbances are studied in [5].

In the field of RCA models one can find for example [2] where authors derived
rate of convergence to normal distribution in the RCA model with almost surely
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bounded and homoscedastic errors that follows martingale difference structure. In [6]
asymptotic properties of estimators in the generalized RCA model in which processes
of random coefficients and disturbances are permitted to be correlated are derived,
but again under homoscedastic assumption. The only one paper concerned with
heteroscedastic RCA models, we know about, is [8]. But strong consistency and
asymptotic normality are proved under stronger assumptions there and moreover
only for the OLS estimator and a zero mean case.

2. Zero mean case

2.1. Model definition and assumptions. Suppose that the behaviour of a sto-
chastic process {Xt} is described by the RCA(1) model

(1) Xt = btXt−1 + Yt, t = 1, . . . , n.

Through the whole paper we will assume that EX0 = 0, 0 < EX2
0 = σ2

0 < ∞,
Yt, t = 1, . . . , n are random variables with EYt = 0 ∀t, 0 < EY 2

t = σ2
t < ∞

which are independent of X0 and that bt, t = 1, . . . , n are random variables with
Ebt = β, 0 < Eb2t = σ2

b < ∞∀t which are independent of X0 and of {Yt}.
It is useful to rewrite model (1) in the following way

(2) Xt = βXt−1 + BtXt−1 + Yt = βXt−1 + ut,

where ut = BtXt−1 + Yt and Bt = bt − β. To keep unified notation let us denote
σ2

B := EB2
t , so the equation σ2

B = σ2
b − β2 holds.

In this paper we will study two types of estimators of the parameter β in model (2)
together with their statistical properties, namely strong consistency and asymptotic
normality. We will focus on ordinary least squares (OLS) and weighted least squares
(WLS) estimators which are given by (3) and (4), respectively:

(3) β̂ =

n∑
t=1

XtXt−1

n∑
t=1

X2
t−1

,

(4) β̂W =

n∑
t=1

1
σ2

t
XtXt−1

n∑
t=1

1
σ2

t
X2

t−1

.

Since the space for this contribution is limited, there is given only a brief summary
of the most important theorems together with main ideas of their proofs. Complete
proofs and all important lemmas on which the proofs are based can be found in [7].

2.2. Strong consistency. To establish strong consistency of the above-mentioned
estimators we have to define an additional set of assumptions:

A0: both {Yt} and {bt} are processes of independent random variables,
A1: ωt := E|Yt|2+δ ≤ K < ∞∀t and for some δ > 0,
A2: ωb := sup

t
E|bt|2+δ < 1 for some δ > 0,

A3: 1
n

n∑
t=1

σ2
t −−−−→

n→∞
σ2 > 0.
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The proving methodology in this field is substantially based on the theory of
martingale difference sequences and mixingales. Definitions of these two concepts
can be found in [4]. In this case these properties are defined with respect to the
filtration F = (Ft, t ≥ 0), where F0 = σ(X0),Ft = σ(X0, Y1, B1, . . . , Yt, Bt).

Remark 2.1. It can be shown that {ut} is an Ft-martingale difference sequence
(Ft-m.d.s.). Combining this fact with (2) we could see that the random coefficient
RCA(1) model (1) with independent errors can be represented as the fixed coefficient
AR(1) model (2) with martingale difference errors of a structure ut = BtXt−1 + Yt.
But the results about these models that can be found for example in [11] cannot
be applied directly, since the crucial assumption of this paper, i.e. E(u2

t |Ft−1) =
Eu2

t a.s, is in our model satisfied in a degenerate case X2
t = EX2

t a.s, only.

Theorem 2.1. Under Assumptions A0–A3, β̂
a.s.−−−−→

n→∞
β holds.

Proof. Combining (2) and (3) we get β̂ − β =
(

1
n

n∑
t=1

Xt−1ut

)(
1
n

n∑
t=1

X2
t−1

)−1

. In

the first step it is shown that 1
n

n∑
t=1

Xt−1ut
a.s.−−−−→

n→∞
0. This arises from the fact that

{Xt−1ut} is an Ft-m.d.s. (see Lemma 1.3. in [7]) and from Theorem 20.11 in [4].
Further, it can be proved that the sequence {X2

t − EX2
t ,Ft} is an L1+ε-mixingale

of an arbitrary size for some ε > 0 (see Lemma 1.4. in [7]). This fact together with

Theorem 20.16. in [4] yields that 1
n

n∑
t=1

X2
t−1

a.s.−−−−→
n→∞

σ2

1−(β2+σ2
B) > 0, which concludes

the proof. �

In case of the WLS estimator (4) we have to add one more assumption:

A4: 0 < N ≤ σ2
t ∀t.

Theorem 2.2. Under Assumptions A0–A4, β̂W
a.s.−−−−→

n→∞
β holds.

Proof. The proof can be done similarly as in the previous case. To ensure existence
of all a.s.-limits, it is necessary in this case to rewrite the difference β̂W − β in

the way β̂W − β =
(

1
ncn

n∑
t=1

1
σ2

t
Xt−1ut

)(
1

ncn

n∑
t=1

1
σ2

t
(X2

t−1 − EX2
t−1) + 1

)−1

, where

cn = 1
n

n∑
t=1

1
σ2

t
EX2

t−1. �

2.3. Asymptotic normality. In order to find an asymptotic distribution of given
estimators of the parameter β in model (2), we have to suppose a stronger set of
assumptions than in the previous paragraph. In the following let us assume:

A0: both {Yt} and {bt} are processes of independent random variables,
A1’: ηt := E|Yt|4+δ ≤ K < ∞∀t and for some δ > 0,
A2’: ηb := sup

t
E|bt|4+δ < 1 for some δ > 0, moreover Eb4t = γb ∀t,

A3: 1
n

n∑
t=1

σ2
t −−−−→

n→∞
σ2 > 0,

A5: 1
n

n∑
t=1

γt −−−−→
n→∞

γ, where γt := EY 4
t ,

A6: 1
n

n∑
t=1

σ2
t EX2

t−1 −−−−→
n→∞

σ2 > 0.
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Theorem 2.3. Under Assumptions A0, A1’, A2’ and A3, A5, A6, the asymptotic

distribution of
√

n(β̂ − β) is N

(
0, ∆

(
1−(β2+σ2

B)
σ2

)2
)
, where

(5) ∆ = σ2
B

6(β2 + σ2
B)σ2 + γ

1 − γb
+ σ2.

Proof. The proof is based on analyzing asymptotic behaviour of the expression
√

n
(
β̂ − β

)
=

(
1

sn

n∑
t=1

Xt−1ut

)(√
n
s2

n

1
n

n∑
t=1

X2
t−1

)−1

. Firstly, it can be derived that

1
ns2n −−−−→

n→∞
∆ holds for s2n :=

n∑
t=1

E
(
X2

t−1u
2
t

)
. Thus, in the rest of the proof it is

sufficient to show that 1
sn

n∑
t=1

Xt−1ut has the asymptotic distribution N(0, 1), which

requires again theory of martingale differences and mixingales (see the proof of The-
orem 1.3. in [7]). �

To get asymptotic results about β̂W we would need, next to Assumption A4, at
least two additional assumptions that would guarantee the existence of the limit

lim
n→∞

1
n

n∑
t=1

E
(

1
σ4

t
X2

t−1u
2
t

)
. The assumptions are as follows:

A7: 1
n

n∑
t=1

1
σ2

t
EX2

t−1 −−−−→
n→∞

σ2 > 0,

A8: 1
n

n∑
t=1

1
σ4

t
EX4

t−1 −−−−→
n→∞

γ > 0.

Since Assumptions A6–A8 seems rather technical and complicated we formulate the
following theorem with the stronger version of Assumption A3 of the form:
A3’: σ2

n −−−−→
n→∞

σ2 > 0.

Theorem 2.4. Under Assumptions A0, A1’, A2’, A3’, A4 and A5, the asymptotic
distribution of

√
n(β̂W − β) is the same as that of

√
n(β̂ − β) given in Theorem 2.3.

Proof. The proof can be done analogously as for the OLS estimator β̂. Existence of
all corresponding limits is ensured by Assumption A3’. �
Remark 2.2. Under Assumption A3’, all three limits defined in Assumptions A6–
A8 exist and they are of the following form:

σ2 =
σ4

1 − (β2 + σ2
B)

,

σ2 =
1

1 − (β2 + σ2
B)

,

γ =
1
σ4

6(β2 + σ2
B) σ4

1−(β2+σ2
B)

+ γ

1 − γb
.
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3. Non-zero mean case

A situation described by model (1) and all asymptotic results presented in Sec-
tion 2 can be generalized to the case of a non-zero mean process.

3.1. Model definition and assumptions. Let us consider the stochastic process
{Vt} with EVt = µ ∀t that follows the model

(6) (Vt − µ) = bt (Vt−1 − µ) + Yt, t = 1, . . . , n.

Put Xt := Vt − µ and let us suppose that all assumptions of Section 2.1 for Xt, Yt

and bt are satisfied.
In case of known parameter µ, all previous results remain valid with Xt := Vt−µ.

Mostly, the parameter µ is unknown and has to be estimated. Consequently, all
estimators of β have to be modified using the estimated value µ̂ instead of a true
unknown parameter µ. In the following we will give results about strong consistency
and asymptotic normality of modified OLS and WLS estimators of the form:

(7) ˆ̂
β =

n∑
t=1

(Vt − µ̂)(Vt−1 − µ̂)

n∑
t=1

(Vt−1 − µ̂)2
,

(8) ˆ̂
βW =

n∑
t=1

1
σ2

t
(Vt − µ̂)(Vt−1 − µ̂)

n∑
t=1

1
σ2

t
(Vt−1 − µ̂)2

,

where µ̂ is a natural estimator of µ given by the following expression:

(9) µ̂ =
1
n

n∑
t=1

Vt.

It can be proved that all asymptotic results stated in the previous section remain
valid in non-zero mean case. All proofs are however a little bit complicated and they
can be found in [7]. Moreover, asymptotic properties of µ̂ can be derived which is
summarized in the sequel.

Theorem 3.1. Under Assumptions A0–A2, µ̂
a.s.−−−−→

n→∞
µ holds.

Proof. Since µ̂− µ = 1
n

n∑
t=1

(Vt − µ) the statement is a direct consequence of the fact

that {Vt−µ,Ft} is an L1+ε-mixingale (see Lemma 1.4. in [7]) and of Theorem 20.16.
in [4]. �

Remark 3.1. In case that only strong consistency of the parameter µ̂ is of interest,
Assumptions A1 and A2 required in Theorem 3.1 could be weakened to analogous
conditions for absolute moments of an order 1 + ε for some ε > 0 instead of 2 + δ.
Theorem 3.2. Under Assumptions A0–A3, the asymptotic distribution of

√
n (µ̂ − µ)

is N

(
0, σ2(1+β)

(1−β)(1−(β2+σ2
B))

)
.

Proof. After some algebra it can be derived that
√

n (µ̂ − µ) =

Un +
(

1
sn

n∑
t=1

ρn,tut

)(√
n
s2

n

)−1

, where ρn,t := 1−βn−t+1

1−β , s2n :=
n∑

t=1
ρ2

n,tEu2
t and
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Un is a random variable for which Un
p−−−−→

n→∞
0 holds. Firstly, it is shown that

1
ns2n −−−−→

n→∞
σ2

1−β

[
1+β

1−(β2+σ2
B)

]
. Further, it has to be proved that 1

sn

n∑
t=1

ρn,tut has

the limiting distribution N(0, 1) (see the proof of Theorem 2.4. in [7] for more
details). �

4. Simulations

To demonstrate asymptotic behaviour of previously studied estimators we present
here results of a short simulation study.

The error process {Yt} considered in (1) was generated from the distribution
N(0, σ2

t ) with σ2
t chosen to satisfy one of the following models (sample size in each

case was 500 observations):

H1: homoscedastic with σ2
t = 3 for t = 1, . . . , 500,

H2: heteroscedastic with stepwise ascending σ2
t having successively values

1, 1.5, 2.5, 4 with breaking points at times n = 80, 180, 300,
H3: heteroscedastic with linearly descending σ2

t given by σ2
t = 6 − 0.01t for

t = 1, . . . , 400 and then constant at the value 2.

For the process of random parameters {bt} normal respectively uniform distribution
were supposed, exact parameters of which are given in Table 1. These parameters
were chosen in order to study the influence of the stability condition β2 + σ2

B < 1
on one side, and the individual impact of β2 respectively of σ2

B for the fixed value
of β2 + σ2

B on the other side.
case A B C D E F
bt N(0.2;0.2) N(0.5;0.7) N(0.75;0.2) N(0.25;0.7) U(-1;1) U(0;1)
β 0.2 0.5 0.75 0.25 0 0.5
σ2

B 0.2 0.7 0.2 0.7 1/3 1/12
β2 + σ2

B 0.24 0.95 0.7625 0.7625 1/3 1/3
Table 1: Parameters of distribution of bt

Combining all these possibilities we simulated 18 different types of model (1). Con-
vergence of estimates towards the true parameter β was studied for generated series
with ascending number of observations n = 50, 100, 150, . . . , 500. In each case esti-
mated parameters were based on 50 independent realizations.

In addition to the previous part of the paper, in this section we also consider
conditionally weighted least squares estimator (CWLS), which is defined as

(10) β̂CW =
n∑

t=1

XtXt−1

σ2
BX2

t−1 + σ2
t

/
n∑

t=1

X2
t−1

σ2
BX2

t−1 + σ2
t

.

Since E(u2
t |Ft−1) = σ2

BX2
t−1 + σ2

t , weights in (10) should better correspond to char-
acter of heteroscedasticity in model (2) rather than σ2

t alone. This hypothesis is
numerically demonstrated by our results, while the theoretical derivation of asymp-
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totic properties of β̂CW is a subject of the future research. For generalized RCA(p)
model with homoscedastic disturbances it has been already proved in [6].

Graphs 4–4 demonstrate convergence of all estimates of β together with devel-
opment of their estimated variances in cases C and D and under all types of het-
eroscedasticity H1, H2 and H3. Summary of selected results for n = 50, 200, 500 in
remaining cases is given in Table 2.

gnc1.eps
Graph 0: bt ∼ N(0.75; 0.2), homoscedasticity H1
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Graph 0: bt ∼ N(0.75; 0.2), heteroscedasticity H2
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Graph 0: bt ∼ N(0.75; 0.2), heteroscedasticity H3
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Graph 0: bt ∼ N(0.25; 0.7), homoscedasticity H1
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Graph 0: bt ∼ N(0.25; 0.7), heteroscedasticity H2
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Graph 0: bt ∼ N(0.25; 0.7), heteroscedasticity H3

From numerical and graphical results it is clearly seen that in all cases WLS, esti-
mates are slightly preferable to OLS ones in both criteria convergence and estimated
variance. Improvement of CWLS estimates is much more significant than that of
WLS ones.
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In case A, the differences between weighted and unweighted estimates and their
estimated variances are not so big since both β and σ2

B are relatively small. On the
other hand in case B, where both parameters are quite big, better convergence and
smaller estimated variances of CWLS estimates are evident. It is well known that
if the value of stability condition is close to 1, both OLS and WLS estimates can
be unstable. In this light very good behaviour of CWLS estimates in case B could
seem quite surprising.

Results of cases C and D demonstrate that under the fixed value of β2+σ2
B , higher

values of σ2
B lead to greater improvement of estimated variances of WLS and mainly

CWLS estimates in comparison with OLS ones. Benefit from estimated variances of
weighted estimates is not as big as in case C where σ2

B is small.
In cases of uniform distribution, the situation is analogous with the only one

difference, namely that better convergence of CWLS estimates is not as significant
as in cases of normal distribution.

N(0.2;0.2) N(0.5;0.7) U(-1;1) U(0;1)

n β̂∗ ŝ2
β̂∗

β̂∗ ŝ2
β̂∗

β̂∗ ŝ2
β̂∗

β̂∗ ŝ2
β̂∗

50 0.1565 0.0219 0.3684 0.0407 -0.0315 0.0263 0.4511 0.0226
OLS 200 0.1736 0.0068 0.4413 0.0221 0.0055 0.0093 0.4844 0.0061

H1 500 0.1880 0.0022 0.4527 0.0161 0.0032 0.0038 0.4955 0.0020
50 0.1667 0.0212 0.4707 0.0238 -0.0387 0.0184 0.4558 0.0233

CWLS 200 0.1782 0.0070 0.4892 0.0068 -0.0018 0.0064 0.4865 0.0062
500 0.1926 0.0020 0.5058 0.0030 -0.0002 0.0024 0.4960 0.0018

50 0.1895 0.0191 0.3753 0.0442 -0.0117 0.0241 0.4737 0.0143
OLS 200 0.1941 0.0059 0.4269 0.0260 -0.0004 0.0073 0.5084 0.0055

500 0.1935 0.0035 0.4525 0.0150 0.0007 0.0036 0.4986 0.0026
50 0.1895 0.0191 0.3753 0.0442 -0.0117 0.0241 0.4737 0.0143

H2 WLS 200 0.1928 0.0044 0.4306 0.0238 0.0031 0.0069 0.5068 0.0048
500 0.1948 0.0024 0.4536 0.0157 0.0031 0.0028 0.5011 0.0021
50 0.1946 0.0188 0.5047 0.0311 -0.0082 0.0218 0.4824 0.0131

CWLS 200 0.2004 0.0042 0.5033 0.0085 0.0161 0.0055 0.5117 0.0047
500 0.2032 0.0021 0.5048 0.0034 0.0087 0.0030 0.5049 0.0022

50 0.2205 0.0176 0.4108 0.0345 0.0408 0.0238 0.5260 0.0160
OLS 200 0.2023 0.0050 0.4457 0.0228 0.0132 0.0100 0.5075 0.0033

500 0.1958 0.0025 0.4397 0.0145 0.0068 0.0036 0.5011 0.0013
50 0.2206 0.0178 0.4105 0.0346 0.0411 0.0237 0.5264 0.0159

H3 WLS 200 0.2012 0.0050 0.4423 0.0245 0.0113 0.0102 0.5055 0.0034
500 0.1975 0.0025 0.4388 0.0128 0.0059 0.0031 0.4994 0.0013
50 0.2271 0.0173 0.5503 0.0277 0.0288 0.0237 0.5331 0.0169

CWLS 200 0.1968 0.0047 0.5212 0.0078 0.0143 0.0072 0.5069 0.0035
500 0.2001 0.0027 0.5091 0.0027 0.0038 0.0028 0.4997 0.0014

Table 2: Estimates of parameters β and their estimated variances

In practice we rarely know the true values of variances σ2
t and σ2

B and hence
we could not compute estimators β̂W and β̂CW directly. However, we can use the
two-stage estimation procedure. It the first stage, OLS estimate β̂ is computed and
then unknown variances σ2

t and σ2
B are taken as OLS estimates of parameters St and

SB from the regression model of the form û2
t = St + SBX2

t−1 + ξt ,where ût denotes
OLS residuals from the first stage. In the second stage, WLS and CWLS estimates
are then computed using values σ̂2

t and σ̂2
B instead of unknown σ2

t and σ2
B .
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We also applied this two-stage procedure to all 18 types of models in order to
compare estimated variances with the true ones and subsequently to compare WLS
and CWLS estimates of β computed using true and estimated variances.

From our simulation results (which are not presented here) it can be seen that
the biggest differences between σ̂2

t , σ2
t and σ̂2

B, σ2
B are realized in cases B and D,

where the random coefficients have quite high variance. In the remaining cases the
estimates are very accurate. We can also see that estimates σ̂2

t always overestimate
true values σ2

t in contrast to σ̂2
B that are lower than σ2

B in all cases. It can lead to
the conclusion that this procedure is not able to separate well the variation in the
data due to the variation in coefficients and due to random errors. It seems that it
moves certain part of the variation σ2

B into the variation σ2
t . On the other hand,

an interesting observation could be the fact that differences in estimated variances
from the first stage do not have as significant impact on the second-stage WLS and
CWLS estimates of β as we have expected, not even in cases B and D. This is in
our opinion a positive result, since it allows us to compute weighted estimates based
on estimated variances without committing any significant deviations from truly
computed WLS and CWLS ones.
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