
ROBUST’98, 195 – 224 ©c JČMF 1998

ROBUST INSTRUMENTS

Jan Ámos VÍŠEK1

IES FSV UK, Prague

Abstract. It is not well-known even among statisticians that in the case
when the explanatory variables and random fluctuations in regression model
are not independent the least squares estimate is generally biased and always
inconsistent. The present paper explains the reason why it is so and offers
examples of such situations. Then the method of instrumental variables
which is able to cope with such situations, is recalled.

On the other hand, it would be naive to assume that the situation when
the assumption of independence of explanatory variables and random fluctu-
ations does not hold is disjoint with the situation when the data are contam-
inated or “at least” not normally distributed. In fact, much more realistic is
to expect the opposite, i. e. that not only the assumption of independence of
regressors and fluctuations is broken but also assumption of normality of fluc-
tuations will be doubtful. At such situations it is reasonable to use a robust
method but such which is able to cope with just mentioned dependence.

And this is the topic the paper is focussed on, namely to study robust
version of the method of instrumental variables. Paper offers a proposal of
corresponding estimator and proves its
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1. INTRODUCTION AND NOTATION

Let N denote the set of all positive integers, R the real line and Rp the
p dimensional Euclidean space. We shall consider for any n ∈ N the linear
regression model

(1) Yi = XT
i β

0 + ei, i = 1, 2, . . . , n

where Y = (Y1, Y2, . . . , Yn)T is the response variable, {XT
i , ei}∞i=1 (Xi ∈

Rp, ei ∈ R) is a sequence of independent identically distributed random
vectors and β0 is the “true” vector of regression coefficients. Let us mention
(we shall need it later) that the data {Yi, XT

i , ei} for one i are denoted as

one case. The upper index “T” indicates transposition. (As implicitly follows
from this notation, we shall assume all vectors to be column ones.) Finally,
let us denote for any n ∈ N by X = (X1, X2, ..., Xn)T the design matrix
and by e = (e1, e2, ..., en)T the vector of random fluctuations. Then we can
rewrite (1) into, sometimes more convenient, form

(2) Y = Xβ0 + e.

We have omitted an indication of the dimension of matrix and of vectors
which would presumably unnecessarily burden the notation. Let us notice
that in the case that the intercept is included in the model the first coordi-
nates of all vectors Xi’s are assumed to be equal to 1. In other words, the
explanatory vectors Xi’s which are assumed to be random, have degenerated
first coordinate. There are of course, except of special cases, well-known rea-
sons for inclusion of the intercept into the model, see Vı́̌sek (1997 b). And
even when we would leave them aside, we should realize that in the case
when we decide not to include intercept into the model we implicitly assume
in some sense an absolute character of data and in fact simultaneously aban-
don otherwise natural requirement of scale- and regression-equivariance of
the estimator of the regression coefficients. That is why we shall assume in
the rest of paper that the intercept is included into the model. Then we can
without any restriction of generality assume:

Assumptions A.. The sequence {XT
i , ei}∞i=1 (Xi ∈ Rp, ei ∈ R) is the se-

quence of independent identically distributed random variables with Xi1 =
1, IEX1j = 0, IEX2

1j = σ2
X ∈ (0,∞) and IEX4

1j <∞) for j = 2, 3, ..., p.
Notice that in the Assumptions A there is no specification of the proba-

bilistic characteristics of ei’s. We shall specify them later. Let us recall that
the (ordinary) least squares estimator of β0 is given by

β̂(LS,n) = arg min
β∈Rp

n∑

t=1

(Yi −XT
i β)2 = arg min

β∈Rp
(Y −Xβ)T(Y −Xβ)
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which yields

(3) β̂(LS,n) = (XTX)−1XTY

where we have assumed that X is of full rank.
It3is of course commonly assumed that a reasonable proposal of estimator is such for

which we are able to prove some convenient properties, as e. g. unbiasedness, consistency,
optimality in some class(es) of estimators, asymptotic normality. Recently, let us say in
the last three decades, we are pleased if also some robustness characteristics are proved
and for the estimators which are defined implicitly we surely appreciate if also feasibility
of evaluation of the estimator is demonstrated.

The last requirement may seem at the first glance as something superfluous or at least
something which is not necessary at the age of powerful computers. A few sentences
devoted to the problem may clarify the situation.

Firstly, let us realize and keep in mind that in fact we nearly never compute the precise
value of the estimator but only better or worse approximation to it. Of course, with
exception of the least squares or some ML-estimates but they are usually those estimators
which are easily corrupted by contamination.

Secondly, let us take also into account that the robust estimators are frequently applied
on relatively small samples of data. Hence their asymptotic properties “do not yet work”.
It is clear, that their “small-sample” properties may be quite different from the asymptotic
ones. And the experiences confirm that, see e. g. V́ı̌sek (1997 a). As we have already said,
by contrast with the least squares estimator we have not at hand a close formula for
evaluation of the estimator and hence we are building our ideas about the “small-sample”
properties of it nearly exclusively on numerical studies and experiences.

Third, in the case, when the evaluation of the approximation to the precise value of the

estimator is too complicated or there is not at all a reasonable algorithm for solving cor-

responding extremal problem, a “naive” algorithm, as e. g. a simple resampling, may give

false results and consequently it may lead to misleading conclusions, see Hettmansperger,

Sheather (1992) and V́ı̌sek (1992). Hence feasibility of evaluation of a good approximation

to the estimator is crucial inevitable requirement.

It is well-known that to prove the unbiasedness of the β̂(LS,n) we (usually)
accept the

• orthogonality condition, i.e. IE(e|X) = 0 (for any n ∈ N).

Similarly to be able to show the optimality of β̂(LS,n) in the class of all linear
unbiased estimators we adopt the

• sphericality condition, i.e. IE(e·eT|X) = σ2
e1I (again for any n ∈ N)4

with σ2
e1 ∈ (0,∞),

(see e. g. Hausman (1978)), although it is clear that it is not necessary
assumption (see Drygas (1976)). Under the assumption of independence
and identical distribution of all vectors (XT

i , ei)
T, which we have adopted

a few lines above, the orthogonality and sphericality conditions reduce of
course to IE(e1|X1) = 0 and to IE(e2

1|X1) = σ2
e1 , σ

2
e1 ∈ (0,∞), respectively.

3Less important parts of text and proofs were given in smaller type of letters to safe
the space.

4“I” denote the unit matrix.
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The sphericality condition is, in the case of deterministic regressors, divided
into two conditions and denoted as the assumption of homoscedasticity and
absence of correlation among random fluctuations for different cases (Judge
et al. (1985)).

But the unbiasedness of the estimator without its consistency would be
rather weak certificate of a good behaviour because the estimator could be
even asymptotically far from the “true” value of parameters. To guarantee
the consistency we usually assume that

(4) IE
{
X1 ·XT

1

}
= Q

is a regular matrix, see again Dhrygas (1976). This assumption, together
with the previous ones, is also sufficient for asymptotic normality.

Since the restriction on the class of linear estimators (which we have con-
sidered in connection with the sphericality condition) is (rather) drastic, we
should assume and a posteriori verify normality of the random fluctuations
to reach the optimality of β̂(LS,n) in the class of all unbiased estimators. This
is not usually underline even in good monographs that if we find by the least
squares such an estimate of model which is well determined, in which the
studentized values of the estimates of regression coefficients are significant,
for which Durbin-Watson statistic is near to 2, etc., nevertheless in which
the residuals are not normally distributed, the model is (nearly) worthless.
In this case the estimate of coefficients is the best one only in the class of
linear estimators and hence there can be, and frequently is available, much
better nonlinear estimator. The sense, in which it is much better, is usu-
ally related to the sum of squares of residuals of substantial subsample of
data. Moreover, when the random fluctuations are not normally distributed,
there are easy justifiable doubts whether any sun of squared residuals, for
all or for some part of observations is appropriate criterion for quality of the
model estimate. E. g. sum of absolute deviation or something else may be
preferable.

Substituting from (2) into (3) we obtain

(5) β̂(LS,n) = β0 + (XTX)−1XTe = β0 + (
1

n
XTX)−1 1

n
XTe

which confirms that orthogonality condition implies unbiasedness. Never-
theless, for consistency it is sufficient - of course together with (4) - only
IE {X1 · e1} = 0 which is somewhat weaker than the orthogonality condi-
tion. Similarly, for optimality of the least squares estimator in the class of
all linear unbiased estimators we need sphericality condition while for the
asymptotic normality we need to assume that e. g. that IE{X1X

T
1 e

2
1} is a

regular matrix (which is again slightly weaker than sphericality condition).
There are however situations at which the orthogonality condition appar-

ently fails. Probably the most famous example of such a situation is the



Robust instruments 199

situation when the explanatory variable is measured with a random error.
Let us look somewhat more closely on the model since it will be useful to
keep the example in mind when we shall need later to accept some new
assumptions. In the simplest version the model reads

(6) Yi = α+ βχi + ei

and

(7) Xi = χi + vi, for i = 1, 2, . . . , n

where random fluctuations in (6) as well as in (7) are i.i.d. with zero mean
and finite positive variance, and they are mutually independent. In words, we
assume that response variable Y is proportional to an explanatory variable χ
but this variable is measured with an error v so that we have at hand values
of the variable X . Of course, we shall assume existence of moments which
we shall need bellow. A modification for a model with multidimensional
explanatory variable is straightforward.

It may seem strange, in the case of random explanatory variable, to include
explicitly in the model a random error of the measurement. But it will be
clear in a moment that in the case when the values of random explanatory
variable are measured without error (which means that they are measured
with error which is negligible with respect to the variance of the random
fluctuations ei’s), the ordinary least squares estimator is unbiased while in
the case of measurement with an error it is generally biased.

The famous example of this type of model is Friedman’s permanent income
hypothesis (Friedman (1957)), although nowadays there are some doubts
whether this hypothesis does hold.

Substituting from (7) into (6), we arrive at

Yi = α+ β(Xi − vi) + ei = α+ βXi + ei − βvi = α+ βXi + ui

with

(8) IE {ui ·Xi} = IE {(ei − βvi)(χi + vi)} = −βσ2
v

where σ2
v is the variance of the fluctuations vi’s. It indicates that orthogo-

nality condition does not hold. On the other hand,

IE
{
u2
i |Xi

}
= IE

{
(ei − βvi)2|Xi

}
= const

where const does not depend on i. Finally

IE {ui · uj} = IE {(ei − βvi)(ej − βvj)} = 0.

Another model which is frequently recalled in this context, is the infinite
distributed lag model, e. g. with geometric structure of coefficients, i. e. the
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model (again in the simplest version)

(9) Yi = α+ β
∞∑

j=1

λj−1Xi−j+1 + ei, i = 1, 2, ...

where random fluctuations ei’s are i.i.d. with IEei = 0, IEe2
i = σ2

e1 ∈ (0,∞)

and for further purposes we shall assume also that IEe3
i exist. Again, a mod-

ification for a model with multidimensional explanatory variable is straight-
forward. It is easy to see that in this form of model we are not able to
estimate its parameters. So multiplying the model for i− 1, i. e.

(10) Yi−1 = α+ β
∞∑

j=1

λj−1Xi−j + ei−1

by λ and subtracting this from (9), we obtain for i = 2, 3, ...

(11) Yi = (1− λ)α+ λYi−1 + βXi + ei − λei−1 = κ+ λYi−1 + βXi + ui,

with

IE {ui|Yi−1 = yi−1} = IE {(ei − λei−1) | Yi−1 = yi−1} 6= 0

since

(12) IE {Yi−1IE {ui|Yi−1 = yi−1}} = IE {ui · Yi−1} = −λσ2
e1

as follows from (11). Similarly as above

IE
{
u2
i |Yi−1

}
= IE

{
(ei − λei−1)

2 |Yi−1

}
= const

but

(13) IE{ui · ui−1} = −λσ2
e1 while IE{ui · uj} = 0 for |i− j| > 1.

In both models orthogonality condition fails and moreover in the second
model also the sphericality condition is broken, and the random fluctuation
are of moving average character. Of course it is possible in such a case to
use generalized least squares estimator or estimated generalized least squares
estimator since the covariance matrix of random fluctuation (or at least its
structure) is known. Nevertheless, (5) together with (8) as well as (12)
implies the inconsistency of the ordinary least squares.

We can continue by the model with random regression coefficients (Hil-
dreth, Houck (1968)) or with the simultaneous equations model (e. g. Kmenta
(1986)), etc.

So we may conclude: There are situations when we need to cope with the
problem that the orthogonality condition and possibly also the sphericality
condition do not hold. On the other hand, as it was indicated and as it is
well known, we are able by some transformations of data, sometimes of course
not very simple, to cope with heteroscedasticity or with dependence between
random fluctuations for different observations. Moreover, it is clear that
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even in the situation when the sphericality condition fails the least squares
estimator is still unbiased and consistent provided the orthogonality condition
holds. Of course we lose some amount of efficiency.

However, if the orthogonality condition fails the least squares estimator
and presumably at least some of robust estimators5 are biased and loose their
consistency. So it seems that the problems caused by a failure of the orthog-
onality condition are more acute than the problems which yields the failure
of sphericality condition.

Of course, there are naturally circumstances under which it is not trivial
to decide whether the orthogonality condition failed or not. Let us recall that
the statistics offers Hausman’s specification test, as a tool for decision (see
Hausman (1978) or Greene (1993), see also Wu (1973) or Ramsey (1974)),
and the instrumental variable estimator, as a tool for estimating β0 (see e. g.
Bowden, Turkington (1984) or Judge et al. (1985)).

Earlier than we shall continue let us recall the heuristics which led to the
instrumental variable estimator (since we shall need it later). Let us imagine
for a while that the least squares estimator was derived in the following,
somewhat intuitive way. Multiplying (2) from the left hand side by 1

nX
T,

we obtain
1

n
XTY =

1

n
XTXβ0 +

1

n
XTe.

It implies that under the orthogonality condition the expressions

1

n
XTY and

1

n
XTXβ0

have the same limit in probability. It can be considered as a justification for
a proposal of an estimator

β̂ =

(
1

n
XTX

)−1
1

n
XTY =

(
XTX

)−1
XTY = β̂(LS,n)

and of an investigation of its properties. So assuming that there is a sequence
of p-dimensional random variables {ZT

i }∞i=1 such that

(14) lim
n→∞

1

n
ZTe = 0 in probability

where of course Z = (Z1, Z2, ..., Zn)T, we can multiply (2) from left by 1
nZ

T

and we obtain
1

n
ZTY =

1

n
ZTXβ0 +

1

n
ZTe.

It means, that the expressions

(15)
1

n
ZTY and

1

n
ZTXβ0

5It is possible to judge it e. g. from their asymptotic representations.
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have again the same limit in probability. In the analogy to the least squares
estimator we can study an estimator

(16) β̂IV =

(
1

n
ZTX

)−1
1

n
ZTY =

(
ZTX

)−1
ZTY.

This estimator is usually denoted as the instrumental variable estimator.
Let us note that in some monographs we can find seemingly more compli-

cated heuristics which should lead to a more general form of the instrumental
variable estimator. However, this approach yields more general estimator
only in the case when ZTX is not regular matrix (see Vı́̌sek (1997 b)).

Substituting now from (2) into (16) we obtain

(17) β̂IV =
(
ZTX

)−1
ZT
(
XTβ0 + e

)
= β0 +

(
1

n
ZTX

)−1
1

n
ZTe,

which indicates consistency of β̂IV and hints how to trace out the conditions
for unbiasedness. Notice that the consistency of this estimator holds inde-
pendently of the fact whether the orthogonality condition holds for Xi’s or
not. In other words, β̂IV is consistent both under the hypothesis as well as
under the alternative.

On the other hand, more or less frequently we find ourselves in the situ-
ation when we feel that except of failure of the orthogonality condition the
assumption of normality is also “more or less” broken, e. g. by a contamina-
tion of data. And in fact we may expect that the failure of the assumption
of normality of random fluctuations take place much more frequently than
the failure of the orthogonality condition. We are aware of it due to the fact
that more and more studies of real data have already demonstrated that the
assumption that the random fluctuations in model are distributed according
to a distribution which is well approximated by the normal one is an illu-
sion, the illusion leading sometimes to fatal error. It may be of interest that
already Sir R. A. Fisher knew it, see Fisher (1922).

Let us mention at this point that those statisticians who insist on nearly exclusive use
of the classical statistical methods (like the least squares or maximum likelihood etc.) still
object that they met very rarely with suspicious data. But it is just due to the fact that
they use only the classical methods which are not able even to indicate that the data may
be damaged. And it may happen even in the case when data are heavily contaminated.

The present author may offer a dozen sample of data for which results of the least

squares analysis seemed to be well or even excellent and also the application of diagnostic

tools (as hat matrix, Durbin-Watson test, Hausman test, White test, test for normality,

etc.) gave satisfactory results. Nevertheless, these results were misleading due to presence

of several observations which had (completely) different character than the rest of data.

Deleting these observations and applying least squares leads to a model with considerably

smaller variance of random fluctuations than had the model estimated for the initial data.

That can be assumed to be a justification that this model is more adequate for bulk of
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data. However to discover such “dirty” observations is usually nearly impossible without

the application of an estimator with reasonably high breakdown point.

So we may conclude that there are inevitably situations when we would like
to use (and even should use) a robust method but we cannot guarantee that
the random fluctuations are not correlated with the explanatory variables,
so that the consistency of the estimation can be seriously damaged6. We
shall show that a straightforward generalization of the instrumental variable
estimator can help.

In order to achieve this let us recall that the M -estimator, for an absolutely
continuous (and frequently, but not necessarily, convex) function ρ, is defined
as

(18) β̂(M,n) = arg min
β∈Rp

n∑

t=1

ρ(Yi −XT
i β)

and it is usually found as a solution of

(19)
n∑

t=1

Xi ψ(Yi −XT
i β) = 0

where ψ is the derivative of ρ (due to the assumption that ρ is absolutely
continuous, ψ exists almost everywhere). Asking for

(20) [XTX ]−
1
2

n∑

t=1

Xi ψ(Yi −XT
i β) = op(1)

instead of (19) allows even to include the estimators with discontinuous ψ-
functions (see Rao, Zhao (1992), compare also Jurečková and Welsh (1990)).
Let us notice that the M -estimators defined in this way (i. e. either by (18) or
(19) or (20)) are not scale equivariant, while e. g. the least squares estimator
is scale- and regression-equivariant. Hence it is preferable to studentize the
residuals and to define the M -estimators as

(21) β̂(M,n) = arg min
β∈Rp

n∑

t=1

ρ

(
Yi −XT

i β

σ̂(n)

)

where σ̂(n) is a (preliminary)
√
n-consistent estimator of σe1 which is assumed

to be scale-equivariant, i. e. for any c ∈ R+, Y ∈ Rn and any matrix X of
the type n× p

σ̂2
(n)(cY,X) = c2σ̂2

(n)(Y,X)

and regression-invariant, i. e. for any b ∈ Rp, Y ∈ Rn and any matrix X of
the type n× p

σ̂2
(n)(Y +Xb,X) = σ̂2

(n)(Y,X).

6There are nearly no robust estimator which is unbiased, so we take care typically only
of consistency.
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Surprisingly, there are only two papers which explicitly stressed that not
asking for the regression-invariance of the preliminary scale estimator7, we
would lose both the scale- as well as regression-equivariance of the estimator
of β0, see Bickel (1975) and Jurečková, Sen (1993). Let us recall that the

estimator β̂ of β0 is scale-equivariant, if for any c ∈ R+, Y ∈ Rn and for any
matrix X of type n× p we have

β̂(cY,X) = cβ̂(Y,X)

and regression-equivariant if for any b ∈ Rp, Y ∈ Rn and for any matrix X
of type n× p

β̂(Y +Xb,X) = β̂(Y,X) + b.
Let us also recall at this point that there is of course another possibility of studenti-

zation, namely simultaneous estimations of β0 and σ2
e1

, see e. g. Huber (1981) or Hampel

et al. (1986). However it proved to be much worse, from the computational standpoint,
than iterative procedure with a preliminary scale estimator, since the steps of an algorithm

which looks for the simultaneous minimum may lead to an oscillating sequence of values
for both parameters.

On the other hand, for the approach with a preliminary scale estimator, the question
of existence and computational feasibility of such scale estimator arises immediately. So
let us add that an example of such estimators can be found in Jurečková, Sen (1993). An
idea based on geometry (or topology, if you want) of observations and using eigenvectors
and eigenvalues of covariance matrix of all variables, yields also a suitable preliminary
scale estimator, see V́ı̌sek (1998 a).

Another possibility is to use a preliminary estimator of β0 which is consistent (or even
√
n-consistent), scale- and regression-equivariant and evaluate a robust scale estimator,

e. g. median absolute deviation of residuals. Of course, we should use as the preliminary

estimator preferably an estimator of β0 with high breakdown point, as e. g. the least

trimmed squares (see V́ı̌sek (1996 a)). The latter possibility is however applicable only

under hypothesis of independence (we shall return to this problem, namely possibility to

use a method with high breakdown point, at the end of paper).

We are going now to give assumptions on ψ under which we shall derive
the promised results.

Assumptions B.. The function ψ allows a decomposition

(22) ψ = ψa + ψc + ψs

where:

• ψa is absolutely continuous with absolutely continuous derivative ψ ′a.
Denote by ψ′′a the second derivative (where it exists) and

ψ′′sup = sup {|ψ′′a(z)| : z ∈ R} <∞.
• ψc is continuous with ψ′c a step-function with a finite number of

jump-points, and ψc is constant in a neighborhood of −∞ and +∞.

7There was of course a common agreement that the estimator has to be scale-
equivariant to be appropriate for studentization.



Robust instruments 205

• ψs is a monotone step-function with steps at points r1, r2, . . . , rh,
i. e. there are α0, α1, . . . , αh so that ψs(z) = α0 for z ∈ (−∞, r1),
ψs(z) = α` for z ∈ (r`, r`+1), ` = 1, 2, . . . , h− 1 and ψs(z) = αh for
z ∈ (rh,∞).

Moreover, IE{ψ(e1σ
−1
e1 )} = 0.

REMARK 1. It is easy to see that all ψ-functions which are nowadays em-
ployed in robust statistics allow the decomposition (22) and most of them also
fulfill other assumptions. In fact, it is a consequence of results describing the
shape of the optimal B- and V -robust ψ-functions, see Hampel et al. (1986).
Roughly speaking they are obtained as max{−b,min{−f ′e1/fe1 , b}} where f
is density of random fluctuations. Due to the decomposition (22) we can
prove corresponding assertions successively for special type of ψ-functions.

The plan of the paper is as follows: First of all we shall prove asymptotic
linearity of instrumental M -statistics and define instrumental M -estimators.
Then we prove

√
n-consistency of the instrumental M -estimators, find their

asymptotic representation and finally also establish asymptotic normality.
All results are valid both under orthogonality condition as well as without
it.

We shall assume that {Zi}∞i=1 is a sequence of instrumental variables.
Since these variables will serve as a substitute of the explanatory variables
in the sense which was explained above, we shall assume about them nearly
the same what we have assumed about Xi’s, namely:

Assumptions C.. The sequence of instrumental variables {Zi}∞i=1 , Zi ∈ Rp,
is the sequence of i.i.d. random variables, independent from the sequence
{ei}∞i=1, Zi1 = 1, IEZ1 = (1, 0, 0, ..., 0)T IEZ2

1j ∈ (0,∞) for j = 2, 3, ..., p.

Moreover, IE
[
Z1X

T
1 ψ
′(e1σ

−1
e1 )
]

= Q, Γ = σ−1
e1 IE[e1ψ

′(e1σ
−1
e1 )] and

IE
{
Z2

1jX
2
1k

[
ψ′(e1σ

−1
e1 )
]2}

exist and are finite for j, k = 2, 3, ..., p.

REMARK 2. Without loss of generality we could assume that Γ = 0. In
fact, it represents a shift of the derivative of ψ-function in the horizontal
direction, i. e. assuming ψ̄(z) = ψ(z+ a) for an appropriate a. Shifting then

the ψ-function in vertical direction, simply taking a modified function ¯̄ψ =
ψ(z)− IEψ(e1), we may reach IE{ψ(e1σ

−1
e1 )} = 0. The last modification does

not change derivative ψ′(z) and hence Γ = 0 will be kept. So this assumption
is (nearly) of the same type as assumption that the mean influence of the
random fluctuations on the response variable is compensated, i. e. that IEe1 =
0 (which we adopt in the least square analysis) or IE{ψ(e1σ

−1
e1 )} = 0 (which

we assume for M -analysis).
Moreover, it was already recalled the optimal B- and V-robust ψ-function

are of a shape max{−b,min{f ′e1/fe1 , b}} where fe1 is the density of random
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fluctuations, and hence we have for symmetrically distributed random fluc-
tuation ψ(−z) = ψ(z). Although we do not take every time the optimal
ψ-function, we usually employ symmetric ones. It implies that in the case
when we have no reasons to assume assymetry of random fluctuations, we
can consider Γ = 0.

2. ASYMPTOTIC LINEARITY OF INSTRUMENTAL
M-STATISTICS

At first we shall consider

Sn(t, u) =
n∑

i=1

Zi

{
ψ(
[
ei − n−

1
2XT

i t
]
σ−1
e1 e
−n− 1

2 u)− ψ(eiσ
−1
e1 )

}

and we shall put for M > 1

TM = {t ∈ Rp, u ∈ R ; max{‖t‖, |u|} < M} .
In the proofs of the next theorems some constants Ci’s will be defined.

These definitions will be assumed valid only within the respective proof.

THEOREM 1. Let ψ be an absolutely continuous function with the abso-
lutely continuous derivative, i. e. ψ = ψa, and the Assumptions C hold. Let
us have

(23) max
{
IE
[
‖Zi‖ · ‖X1‖2

]
, IE [‖Zi‖‖X1‖|e1|]

}
<∞.

Finally, let

(24) IE{ψ(e1σ
−1
e1 )} = 0 and 0 < IE[e1ψ

′(e1σ
−1
e1 )]2 <∞.

Then for any M > 0

(25) sup
TM

∥∥∥∥∥Sn(t, u) + n
1
2Qt+ n−

1
2 Γ

n∑

i=1

Ziu

∥∥∥∥∥ = Op(1) as n→∞.

REMARK 3. Let us again observe, similarly as in Remark 1, that for the
ψ-functions which are constant in a neighborhood of ±∞ the assumptions of
THEOREM 1 hold since ψ′ as well as ψ′′ is equal to zero in this neighborhood.
As it was already recalled, all the optimal B- and V-robust estimators are
generated by such functions (Hampel et al. (1986)). Hence the assumptions
of the theorem do not represent a considerable restriction.
Proof of theorem. Without loss of generality let σe1 = 1. First of all let us write for
u ∈ R, |u| < M

e−n
− 1

2 u = 1− n− 1
2 u+ hn−1u2

where h ∈
z
1
2
n−

1
2 e−n

− 1
2M , 1

2
n−

1
2 en
− 1

2M { and also|
ei − n−

1
2XT

i t } e−n− 1
2 u

= ei − n−
1
2 ~ XT

i t+ eiu � + n−1XT
i tu+ h ei n

−1u2 − n− 3
2XT

i t h · u2,
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and finally

Zi � ψ � | ei − n− 1
2XT

i t } e−n− 1
2 u � − ψ(ei) � = −n− 1

2Zi(X
T
i t+ eiu)ψ′(ei)

(26) +n−1Zi � XT
i t u+ h ei − n−

1
2XT

i t · h · u2 � ψ′(ei) + ZiRni(t)

where the remainder term can be written in a form

Rni(t) = � −n− 1
2 (XT

i t+ eiu) + n−1 � XT
i t u+ h ei

−n− 1
2XT

i t · h · u2 �.� | ψ′(ξ(n)
i )− ψ′(ei) }

for some ξ
(n)
i for which, starting from some n0, we have |ξ(n)

i − ei| ≤ 2n−
1
2 |XT

i t + eiu|.
Now, for any fix j, k ∈ {1, 2, . . . , p} the sequences�� �

ZijXikψ
′(ei) − IE [ZijXikψ

′(ei)] � �� ∞
i=1

and �� �
Zij � ei · ψ′(ei) − IE[ei · ψ′(ei)] �C� �� ∞

i=1

are sequences of independent identically distributed random variables with zero mean and
finite (positive) variances and hence Lindeberg-Lévy version of central limit theorem allows
to find an n1 ∈ N so that for any ε > 0 we may find Cε <∞ so that for any n > n1

(27) PF � max
1≤j, k≤p ����� n

− 1
2

n�
i=1

� ZijXikψ′(ei) − IE � ZijXikψ′(ei) ��� ����� > Cε � < ε

as well as

(28) PF � max
1≤j≤p ����� n

− 1
2

n�
i=1

� Zij � ei · ψ′(ei)− IE[ei · ψ′(ei)]� � ����� > Cε � < ε.

Taking once again into account that�
ZijXikψ

′(ei) � ∞i=1
and

�
Zijeiψ

′(ei) � ∞i=1

are sequences of independent identically distributed random variables with finite mean
and applying Kolmogorov’s law of large numbers we again find that

(29) n−1 max
1≤j, k≤p �����

n�
i=1

ZijXikψ
′(ei) ����� = Op(1) as n→∞,

(30) n−1 max
1≤j≤p �����

n�
i=1

Zijeiψ
′(ei) ����� = Op(1) as n→∞

and

(31) n−
3
2 max

1≤j, k≤p �����
n�
i=1

ZijXikψ
′(ei) ����� = op(1) as n→∞.

Due to the fact that ψ
′

is absolutely continuous we may write

ψ
′
(ξ

(n)
i )− ψ′ (ei) = � ξ

(n)
i

ei

ψ′′(z)dz
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and hence we have for any n

|ψ′ (ξ(n)
i ) − ψ′ (ei)| ≤ n−

1
2 |XT

i t|ψ′′sup.

On the other hand, applying Hlder’s inequality we obtain���XT
i t ��� ≤ p− 1

2 ‖Xi‖ M

and hence there is a constant C1 such that

sup
TM
‖ZiRni(t)‖ ≤ n−1M2C1ψ

′′
sup ‖Zi‖ ‖Xi‖ {‖Xi‖+ |ei|} .

Now, it is again sufficient to take into account that the sequences� ‖Zi‖ ‖Xi‖2 � ∞
i=1

and

{‖Zi‖ ‖Xi‖ |ei|}∞i=1

are sequences of i. i. d. random variables with finite mean values, and to apply Kolmogorov’s
law of large numbers once again to find that

(32) sup
TM
‖ZiRni(t)‖ = Op(1).

Now, the proof follows from (27), (28), (29), (30), (31) and (32). 2

REMARK 4. Let us notice that the proof of the theorem is essentially based
on the character of the processes

{
ZiX

T
i tψ

′(ei)
}
t∈TM ,

{
ZiX

T
i t
}
t∈TM , {uZi

eiψ
′(ei)}u∈TM , etc. which are the products of some fixed sequences of random

variables and of parameters of the processes. It allows, roughly speaking,
to treat the suprema of the processes as the products of these sequences of
random variables and of suprema of parameters.

THEOREM 2. Let ψ′(z) = αs, for z ∈ (rs, rs+1), s = 0, 1, . . . , k where
0 = α0, α1, . . . , αk = 0 are real numbers, −∞ = r0 < r1 < · · · < rk <
rk+1 =∞. Let the Assumptions C hold and IE{ψ(e1σ

−1
e1 )} = 0. Moreover,

max
{
IE
[
‖Zi‖‖X1‖2

]
, IE [‖Zi‖‖X1‖ · |e1|]

}
<∞

and IE{ψ(e1σ
−1
e1 )} = 0. Finally, let Fe1 (v|X1) (the conditional distribution

of random fluctuations given X1) have a bounded density fe1(v|X1) and let
us assume that the bound may be found independent on X1. Then for any
M > 0

(33) sup
TM

{∥∥∥∥∥Sn(t, u) + n
1
2Qt+ n−

1
2 Γ

n∑

i=1

Ziu

∥∥∥∥∥

}
= Op(1) as n→∞.

Proof. Not loosing generality let us again assume σe1 = 1 and notice that due to the
character of the function ψ(z) the second part of assumption (24) is fulfilled. Finally, let us

denote ηi = Zi � ψ(
|
ei − n−

1
2XT

i t } σ−1
e1 e
−n−

1
2 u)− ψ(eiσ

−1
e1 ) � and r = max {|r1|, |rk|}.

The problem induced by the fact that the derivative ψ′ is a step-function is that we
cannot use the relation (26) in the case when for given i there is an s0 ∈ {1, 2, ..., k} such
that either

(34) (ei − n−
1
2XT

i t)e
−n−

1
2 u ≤ rs0 ≤ ei
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or

(35) ei ≤ rs0 ≤ (ei − n−
1
2XT

i t)e
−n−

1
2 u.

Hence the idea of proof is to withdraw from Sn(t, u) the sum of all ηi’s for which either
(34) or (35) case takes place, then to show that the sum of the terms which were withdrawn
from Sn(t, u) is small in probability and finally to add to the “reduced” Sn(t, u) for all
indeces i which were in the previous step withdrawn appropriate terms (sum of them will
be shown to be also negligable in probability) to reach assertion of theorem.

In order to fulfill just sketched plan, let us denote the event given by (34) and (35) by
Bn(i, t, u) and its indicator by IBn(i,t,u). Since (34) and (35) are successively equivalent
to

rs0 ≤ ei ≤ rs0en
− 1

2 u + n−
1
2XT

i t

and

rs0e
−n−

1
2 u + n−

1
2XT

i t ≤ ei ≤ rs0
and due to the assumption about the upper bound of the density of random fluctuations,
there is a constant C1 such that the conditional probability of Bn(i, t, u) for given Xi is

bounded by C1 � n− 1
2 ��XT

i t �� + r · |en−
1
2 u − 1| � . Now

|en
− 1

2 u − 1| ≤ |1 + n−
1
2M +

n−1M2

2!
+
n−

3
2M3

3!
+ ...− 1|

≤ n− 1
2M � 1 + n−

1
2M +

n−1M2

2!
+
n−

3
2M3

3!
+ ... � = n−

1
2Men

− 1
2 M .

Then there is a constant C2 such that for t, u ∈ TM corresponding probability is bounded

by n−
1
2C2 {‖Xi‖+ 1}. Similar consideration lead to the existence of a constant C3 such

that

|ψ(
|
ei − n−

1
2XT

i t } e−n− 1
2 u)− ψ(ei)| ≤ n−

1
2C3 {‖Xi‖+ |ei|} .

Then

IE‖ηiIBn(i,t,u)‖

≤ n−1C4IE � ‖Zi‖IE � z ψ(
|
ei − n−

1
2XT

i t } e−n− 1
2 u) − ψ(ei)

{ IBn(i,t,u) ���� Xi �C�≤ n−1C4IE
�
‖Zi‖IE

�
[‖Xi‖+ |ei|] IBn(i,t,u)|Xi �<�

≤ n−1C5IE {‖Zi‖ (‖Xi‖+ 1) (‖Xi‖+ |ei|)}
for appropriate constants C4 and C5. Now we have

Sn(t, u) =
n�
i=1

ηiIBn(i,t,u) +
n�
i=1

ηi(1 − IBn(i,t,u))

and using Chebyshev’s inequality for the nonnegative random variable, we obtain

P � ‖ n�
i=1

ηiIBn(i,t,u)‖ > C6 � ≤ C−1
6 C5IE {‖Z1‖ (‖X1‖+ 1) (‖X1‖+ |e1|)}

On the other hand, � n
i=1 ηi(1− IBn(i,t,u)) can be treated in the same way as the Sn(t, u)

in the proof of Theorem 1. To finish the proof we need to add to

(36)
n�
i=1

n−
1
2Zi(X

T
i t + eiu)ψ′(ei)(1 − IBn(i,t,u))
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the sum
n�
i=1

n−
1
2Zi(X

T
i t+ eiu)ψ′(ei)IBn(i,t,u)

to reach the assertion of present theorem, since we can then show (in the same way as it
was done in the proof of Theorem 1) that

n�
i=1

n−
1
2Zi(X

T
i t+ eiu)ψ′(ei)− � n 1

2Qt+ n−
1
2 Γ

n�
i=1

Ziu � = Op(1) as n→∞.

However, along similar lines as above we may find that

sup
TM �����

n�
i=1

n−
1
2Zi(X

T
i t + eiu)ψ′(ei)IBn(i,t,u) �����

= Op(1)

so that we can add this to (36). That concludes the proof. 2

THEOREM 3. Let ψ(z) = αs for z ∈ (rs, rs+1), s = 0, 1, . . . ,m where
α0, α1, . . . , αm are real numbers and −∞ = r0 < r1 < · · · < rk < rm+1 =∞.
Let again the Assumptions C hold. Moreover, let Fe1(v|X1) have for all
values of X1 bounded density fe1(v|X1) which is Lipschitz of the first order
and let us assume that the bound as well as Lipschitz constant may be found
independent of X1. Assume also that the joint distribution of X1 and e1 is
continuous. Finally put

q =
m∑

s=1

{
(αs − αs−1) IE

[
Z1X

T
1 fe1(σe1 rs|X1)

]}

and

γ =
m∑

s=1

{rs(αs − αs−1) IE [Z1fe1(σe1 rs|X1)]} .

Then for any M > 0

(37) sup
TM

{∥∥∥n− 1
2Sn(t, u) + qt+ γu

∥∥∥
}

= Op
(
n−

1
4

)
as n→∞.

Proof. Without loss of generality let us assume that m = 1 (write r instead of r1) and
α0 < α1 , and denote τ = α1 − α0. Then according to the assumptions, there is C1 <∞
such that we have fe1(v|X1) < C1. Let us denote

ξi(n, t, u) = ψ(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u)− ψ(eiσ

−1
e1

)

and assume that σe1 = 1. It is clear that ξi(n, t, u) 6= 0 only if either

(38) ei < r < [ei − n−
1
2XT

i t]e
−n−

1
2 u ↔ n−

1
2XT

i t+ ren
− 1

2 u < ei < r

or

(39) [ei − n−
1
2XT

i t]e
n
− 1

2 u < r < ei ↔ r < ei < n−
1
2XT

i t+ ren
− 1

2 u.

Denote the events described in (38) and (39) successively by B
(k)
i (n, t, u), k = 1, 2. First

of all, please observe that (38) can take place when

(40) n−
1
2XT

i t+ ren
− 1

2 u < r
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and similarly (39) can hold if

(41) n−
1
2XT

i t+ ren
− 1

2 u > r.

Fix an ` ∈ {1, 2, ..., p} and denote successively by D
(j)
i (n, t, u, `), j = 1, 2, 3, 4 the events� ω ∈ Ω : {n− 1

2XT
i t+ ren

− 1
2 u < r} ∩ {Zi` ≤ 0} � ,� ω ∈ Ω : {n− 1

2XT
i t+ ren

− 1
2 u < r} ∩ {Zi` > 0} � ,� ω ∈ Ω : {n− 1

2XT
i t+ ren

− 1
2 u ≥ r} ∩ {Zi` ≤ 0} �

and � ω ∈ Ω : {n− 1
2XT

i t+ ren
− 1

2 u ≥ r} ∩ {Zi` > 0} � .
Further denote by π

(j,k)
i (n, t, u, `) j = 1, 2, 3, 4, k = 1, 2 the conditional probabilities of

the events B
(k)
i (n, t, u) ∩ D(j)

i (n, t, u, `) given the event D
(j)
i (n, t, u, `). For any n ∈ N ,

j = 1, 2, 3, 4 and k = 1, 2 we have

π
(j,k)
i (n, t, u, `) = IE � I

B
(k)
i (n,t,u)∩D(j)

i (n,t,u,`)
|D(j)
i (n, t, u, `) �

= IE � IE z I
B

(k)
i

(n,t,u)∩D(j)
i

(n,t,u,`)
|Xi,D(j)

i (n, t, u, `) { �
(42) ≤ � ∞

−∞

��� �� � r

n
− 1

2 � XT
i t+re

n
−1

2 u � fei(v|Xi = x)dv � ���� fXi(x)dx

≤ C1 � ∞
−∞

��� �� � r

n
− 1

2 � XT
i t+re

n
− 1

2 u � dv � ���� fXi(x)dx

and hence there is a constant C2 such that

(43) π
(j,k)
i (n, t, u, `) < n−

1
2C2 {IE‖Xi‖+ 1} .

Of course, lower and upper bound in (42) should be interchanged if r < n−
1
2 �XT

i t

+ren
− 1

2 u { but (43) holds for any combination of j and k. Now, we shall study the

sum

Sn`(t, u) =
n�
i=1

Zi` [ξi(n, t, u)− IE ξi(n, t, u)] .

Since ∪4
j=1D

(j)
i (n, t, u, `) = Ω a.s., we have

ξi(n, t, u) =
4�
j=1

z
ξi(n, t, u)I

D
(j)
i (n,t,u,`)

{ a.s.,

and hence IEξi(n, t, u) = � 4
j=1 IE

z
ξi(n, t, u)I

D
(j)
i (n,t,u,`)

{ . Then

n�
i=1

Zi` [ξi(n, t, u)− IE ξi(n, t, u)]
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(44) =
n�
i=1

4�
j=1

Zi`

z
ξi(n, t, u)I

D
(j)
i (n,t,u,`)

− IE [ξi(n, t, u)I
D

(j)
i (n,t,u,`)

] { .
Now consider Zi`

z
ξi(n, t, u)I

D
(1)
i (n,t,u,`)

−IE [ξi(n, t, u)I
D

(1)
i (n,t,u,`)

] { . We easy find

that, under condition that I
D

(1)
i (n,t,u,`)

= 1, we have

Zi`

z
ξi(n, t, u)I

D
(1)
i (n,t,u,`)

− IE [ξi(n, t, u)I
D

(1)
i (n,t,u,`)

] {
(45) = τZi`(1 − π(1,1)

i (n, t, u, `)) = −τ |Zi`|(1− π(1,1)
i (n, t, u, `)) > −τ |Zi`|

with probability π
(1,1)
i (n, t, u, `)

and

(46) = −τZi`π(1,1)
i (n, t, u, `) = τ |Zi`|π(1,1)

i (n, t, u, `) < τn−
1
2 C2|Zi`| · [IE‖Xi‖+ 1]

with probability 1− π(1,1)
i (n, t, u, `).

Taking into account the expressions staying after the first sign of equality in (45) and in
(46), and corresponding probabilities, we find that

IE � Zi` z ξi(n, t, u)I
D

(1)
i (n,t,u,`)

− IE [ξi(n, t, u)I
D

(1)
i (n,t,u,`)

] { � = 0

Notice please that for I
D

(1)
i (n,t,u,`)

= 0 we have

Zi`

z
ξi(n, t, u)I

D
(1)
i (n,t,u,`)

− IE [ξi(n, t, u)I
D

(1)
i (n,t,u,`)

] { = 0.

So, putting for any n ∈ N and i = 1, 2, ..., n ai`(n, t, u) = τ |Zi`|π(1,1)
i (n, t, u, `) and

bi`(n, t, u) = τ |Zi`|(1−π(1,1)
i (n, t, u, `)), and utilizing Lemma A.2, define for I

D
(1)
i (n,t,u,`)

= 1 µ
(1)
i` (n, t, u) the time for Wiener process to exit the interval (−ai`(n, t, u), bi`(n, t, u))

and for I
D

(1)
i

(n,t,u,`)
= 0 µ

(1)
i` (n, t, u) = 0. Then we obtain

Zi`

z
ξi(n, t, u)I

D
(1)
i (n,t,u,`)

− IE [ξi(n, t, u)I
D

(1)
i (n,t,u,`)

] { =D W (µ
(1)
i` (n, t, u))

where “=D” denotes equality in distribution. Similarly we find for j = 2, 3 and 4

Zi`

z
ξi(n, t, u)I

D
(j)
i (n,t,u,`)

− IE [ξi(n, t, u)I
D

(j)
i (n,t,u,`)

] { =D W (µ
(j)
i` (n, t, u)).

Finally, putting µi`(n, t, u) = � 4
j=1 µ

(j)
i` (n, t, u) and taking into account (44), we obtain

n−
1
4 [Sn`(t, u)− IE Sn`(t, u)] = n−

1
4

n�
i=1

Zi` [ξi(n, t, u)− IE ξi(n, t, u)]

=D n−
1
4

n�
i=1

4�
j=1

W (µ
(j)
i` (n, t, u)) =D n−

1
4

n�
i=1

W (µi`(n, t, u))

=D W (n−
1
2

n�
i=1

µi`(n, t, u)).

Now, let us take into account inequalities which are given in (43), (45) and (46), and put

ci` = τ |Zi`| and di` = n−
1
2 τC2|Zi`| · [‖Xi‖+ 1]. Defining

(47) κi`(n,M) the time for Wiener process to exit the interval (−ci`, di`),
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we obtain

µi`(n, t, u) ≤ κi`(n,M).

So, we arrive at

sup
TM

n−
1
4 |Sn`(t, u)− IE Sn`(t, u)| =D sup

TM �����W (n−
1
2

n�
i=1

µi`(n, t, u)) �����
(48) ≤ sup � |W (s)| : 0 ≤ s ≤ n− 1

2

n�
i=1

κi`(n,M) � .
Moreover, see again Lemma A.2, we have from (47) for any t, u ∈ TM

IEκi,`(n,C) ≤ 4n−
1
2 C2IEZ

2
i` · [IE‖Xi‖+ 1]

for all n ∈ N , i. e.

n−
1
2

n�
i=1

IEκi,`(n,C) ≤ C2IEZ
2
1` · [IE‖X1‖+ 1] .

It means that for any positive ε there is a constant C3 and nε ∈ N so that for any n > nε

(49) P � n− 1
2

n�
i=1

κi(n,C) > C3 � < ε

2

and then there is also C4 ∈ (0,∞) such that

(50) P {sup {|W (s)| : 0 ≤ s ≤ C3} > C4} <
ε

2
,

see e. g. Csörgö, Révész (1981). Taking into account (48), (49) and (50), we arrive at

P � sup
TM

n−
1
4 |Sn`(t, u)− IE Sn`(t, u)| > C4 � < ε

and it means that also

sup
TM

n−
1
4 ‖Sn(t, u)− IE Sn(t, u)‖

is bounded in probability. We shall conclude the proof if we show that

n−
1
4 sup
TM �����

IE Sn(t, u) + n−
1
2 τIE

n�
i=1

|
Zi ~ XT

i t+ ur � fei (r|Xi) } �����
= O(1)

as n→∞. We have already shown that IEξi(n, t, u)

= � 4
j=1 IE

z
ξi(n, t, u)I

D
(j)
i (n,t,u,`)

{ . On the other hand, we have

IE � Ziξi(n, t, u)ID(1)(n,t,u,`)
� = IE � ZiIE | ξi(n, t, u)ID(1)(n,t,u,`)|Xi, Zi } �

= IE � Zi � ∞
−∞

ξi(n, t, u)I
D

(j)
i (n,t,u,`)

fei(v|Xi, Zi) dv �
= τIE � Zi � r

n
− 1

2XT
i t+re

n
−1

2 u
fei (v|Xi, Zi)dv �

= τIE � Zi � r

n
− 1

2 XT
i
t+ren

− 1
2 u

[fei (r|Xi, Zi) + fei (v|Xi, Zi)− fei (r|Xi, Zi)] dv � .
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(Again the upper and lower bound of the integral should be interchanged, if it is appro-
priate.) Since Zi and ei are independent, the last expression is equal to

τIE � Zi � r

n
− 1

2XT
i t+re

n
− 1

2 u
[fei (r|Xi) + fei(v|Xi) − fei (r|Xi)] dv �

= −τIE � Zi z n− 1
2XT

i t+ r(en
− 1

2 u − 1) { fei (r|X1) � + IER∗int

where

R∗int = τ � Zi � r

n
− 1

2XT
i t+re

n
−1

2 u
[fei(v|Xi) − fei (r|Xi)] dv � .

Moreover

en
− 1

2 u − 1 = n−
1
2 u+

n−1u2

2!
+
n−

1
2 u3

3!
+ ...,

and hence we have

IE Sn(t, u) + n−
1
2 τIE

n�
i=1

|
Zi ~ XT

i t + ur � fei(r|Xi) }
=

n�
i=1

� IE R∗int − τrIEZi � n−1u2

2!
+
n−

3
2 u3

3!
+ ... � fei (r|X1) � .

Finally,

n−
1
4 sup
TM �����

IE Sn(t, u) + n−
1
2 τIE

n�
i=1

|
Zi ~ XT

i t+ ur � fei (r|Xi) } �����
= n−

1
4 sup
TM �����

n�
i=1

IE R∗int �����
+O(n−

1
4 ) ≤ n− 1

4 sup
TM

n�
i=1

‖IE R∗int‖+O(n−
1
4 )

as n → ∞. Recalling that fe1 (v|X1) is Lipschitz and |r − v| ≤ n−
1
2XT

i t + ren
− 1

2 u, we
have for t, u ∈ TM

|fe1 (v|X1)− f(r|X1)| < n−
1
2C5 [‖X1‖+ 1]

and hence for t, u ∈ TM

‖IER∗int‖ ≤ n−
1
2 τC5 �����

IE � ‖Zi‖ [‖Xi‖+ 1] · � r

n
− 1

2 XT
i t+re

n
− 1

2 u
dv � �����≤ n−1C6IE � ‖Zi‖ · [‖Xi‖+ 1]2 �

for some constant C6 (again the upper and the lower bound of the integral should be
interchanged, if it is appropriate). So we have

n−
1
4 sup
TM

n�
i=1

‖IE R∗int‖ = O(n−
1
4 )

which concludes the proof. 2
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3. CONSISTENCY AND ASYMPTOTIC NORMALIRY
OF INSTRUMENTAL M-ESTIMATES

THEOREM 4. Let ψ = ψa + ψc and the assumptions of Theorem 1 and
2 be fulfilled. Moreover, let σ̂(n) be a

√
n-consistent estimator of scale of

random fluctuations. Finally, let Q (see Assumptions C) be positive definite
matrix. Then the equation

(51)
n∑

t=1

Zi ψ

(
Yi −XT

i β

σ̂(n)

)
= 0

has a
√
n-consistent solution, i. e. there is β̂(IM,n) for which (51) is fulfilled

8 and √
n
(
β̂(IM,n) − β0

)
= Op(1) as n→∞.

Proof. Using (25) and (33) we arrive at

n−
1
2

n�
i=1

Ziψ(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u)

(52) = n−
1
2

n�
i=1

Ziψ(eiσ
−1
e1

) −Qt− ΓIEZ1u+ op(1) as n→∞.

Due to the assumptions on the functions ψa and ψc it is possible to verify that the
assumptions of Lindeberg-Lévy theorem are fulfilled for the sequence of random variables�

Ziψ(eiσ
−1
e1

) � ∞
i=1

and due to the fact that we have assumed that IE � ψ(e1σ
−1
e1 ) � = 0 and Zi and ei are

mutually independent,

n−
1
2

n�
i=1

Ziψ(eiσ
−1
e1

)

is bounded in probability (of course, independently on t and u). It means that for any
ε > 0 there is a constant C1 > 0 and n0 ∈ N so that for any n > n0 we have for

Bn = � ω ∈ Ω : �����
n−

1
2

n�
i=1

Ziψ(eiσ
−1
e1

) �����
< C1 �

P (Bn) > 1 − ε. Further for any ∆ > 0, let n1 > n0 be selected so that for all n > n1

there is a set C∆
n such that for all ω ∈ C∆

n the term “op(1)” in (52) is smaller than ∆ and

P (C∆
n ) > 1− ε. Taking into account the linearity in t of

tT n−
1
2

n�
i=1

Ziψ(eiσ
−1
e1

)

and of

tTΓIEZ1u,

8The upper index ‘IM’ means instrumental M-estimate
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we may find for any C2 > 0 and any fixed u ∈ (0, C2) a constant C3 > 0 so that for any
n > n1, ω ∈ Bn ∩ C∆

n and any t ∈ Rp, ‖t‖ = C3, we have

−tT n− 1
2

n�
i=1

Ziψ(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u)

= −tT n− 1
2

n�
i=1

Ziψ(eiσ
−1
e1

) + tTQt+ tTΓIEZ1u+ op(1) ≥ 0

since we have assumed the matrix Q to be positive definite. Now due to the
√
n-consistency

of σ̂2
(n)

(ω) we may find n2 > n1 so that for all n > n2 there is a set Dn such that P (Dcn) < ε

and for any ω ∈ Dn σ̂2
(n)

(ω) = σe1 · expn
− 1

2 u for some |u| < M (of course, the consistency

would suffice in this case). Finally applying Assertion A.1 we find for any n > n2 and
ω ∈ Bn ∩ C∆

n ∩Dn such t ∈ Rp that ‖t0‖ ≤ C3, t0 = t0(u,ω) and

n�
i=1

Ziψ(
Yi −XT

i β
0 + n−

1
2XT

i t0)

σ̂2
(n)

) = 0.

Writing

t0(u, ω) =
√
n ~ β̂(u, ω)− β0 �

and taking into account finiteness of σ̂(n), we conclude the proof of the promised assertion.

2

REMARK 5. Notice please that the key role play in the previous proof the
application of (25) and (33) and the assumption that Q is positive definite. In
what follows we shall use the same in a somewhat more complicated situation.

COROLLARY 1. Let IE
{
Z1X

T
1 ψ
′(e1σ

−1
e1 )
}

= Q be a positive definite ma-
trix and σ̂(n) a

√
n-consistent estimate of σe1 . Then under assumptions of

Theorem 4 we have

√
n
(
β̂(IM,n) − β0

)
= n−

1
2Q−1

n∑

i=1

Zi
{
ψ(eiσ

−1
e1 )− Γ(logσ̂(n) − logσe1)

}

(53) +Op(n−
1
2 ) as n→∞.

Proof. Let us recall that due to previous theorem t =
√
n ~ β̂(IM,n) − β0 � = Op(1) and

due to the assumptions of this corollary we also have u =
√
n(logσ̂(n) −logσe1 ) = Op(1).

Moreover
n�
i=1

Ziψ(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u) =

n�
i=1

Ziψ(
Yi −XT

i β̂
(IM,n)

σ̂(n)

) = 0.

So using (25) and (33) we obtain

−n− 1
2

n�
i=1

Ziψ(eiσ
−1
e1

) +
√
nQ(β̂(IM,n) − β)

+n−
1
2 Γ

n�
i=1

Zi(logσ̂(n) − logσe1 ) = Op(n−
1
2 ) as n→∞

which yields (53).
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REMARK 6. Notice please that even in the case when the orthogonality
condition is broken, the matrix Q has a block-structure of the type

[
ν ζT

0 Q(1)

]

where ν = IEψ′(e1σ
−1
e1 and zetaj−1 = IE

[
Z11X1jψ

′(e1σ
−1
e1 )
]
, j = 2, 3, ...p.

The elements in the first column starting with thw second row are zero, since
IE
[
Z1jX11ψ(e1σ

−1
e1 )
]

= IE
[
Z1jψ(e1σ

−1
e1 )
]

= 0 j = 2, 3, ...p. It implies that

Q−1 =

[
dT

0 Q−1
(1)

]

where dT = −aT ·Q−1
(1). Now having rewritten (53) into the form

√
n
(
β̂(IM,n) − β0

)
= n−

1
2Q−1

n∑

i=1

Ziψ(eiσ
−1
e1 )

−n− 1
2Q−1

n∑

i=1

ZiΓ(logσ̂(n) − logσe1 ) +Op(n−
1
2 ) as n→∞

and taking into account that except of the first coordinate the vector
n−

1
2
∑n
i=1 Zi is bounded in probability while logσ̂(n) − logσe1 converges to

zero, we find that the last but one term in (53) really affects only the first

coordinate of
√
n
(
β̂(IM,n) − β0

)
.

On the other hand, to avoid completely this influence, we need Γ = 0.
As we have already shown, it takes place e. g. in the case when the distri-
bution of random fluctuations is symmetric and we employ optimal B-robust
M -estimator. After all, the situation is not surprising because it is known
that an unbiased and efficient estimator of the location parameter may be
constructed in the case when we assume nothing more then symmetry of dis-
tribution of underlying probabilistic model, see Beran (1978), Stone (1975)
or Vı́̌sek (1991), but the symmetry is substantial.

COROLLARY 2. Let IE
{
Z1X

T
1 ψ
′(e1σ

−1
e1 )
}

= Q be a positive definite ma-
trix, Γ = 0 and let σ̂(n) be a

√
n-consistent estimate of the variance σe1 .

Then under assumptions of Theorem 4
√
n
(
β̂(IM,n) − β0

)
is asymptotically

normal with zero mean and a covariance matrix

C = Q−1IE
{
ψ2(e1σ

−1
e1 )Z1Z

T
1

}
[Q−1]T .

Proof. directly follows from the previous corollary. 2

Let us turn now our attention to the case of discontinuous ψ-functions. We
are going to define instrumental M -estimator for discontinuous ψ-function
and to show its consistency and asymptotic normality. We shall do it along
similar lines as in the case of continuous ψ-function, of course with necessary
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modifications. Let us consider the ψ-function which we treated in Theorem
3 and let K be a positive constant. Then for any n ∈ N and ϑ > 1

2 define

ψ̃n(v) =
1

2

{
αs + αs−1 + (αs − αs−1)nϑK−1 (v − rs)

}

for |v−rs| < Kn−ϑ and s ∈ {1, 2, ...,m}
and

ψ̃n(v) = ψ(v) elsewhere.

(Since ϑ will be assumed to be fix, we have omitted it in the notation for

ψ̃n(v).)

THEOREM 5. Let the assumptions of Theorem 3 hold and q (see Theorem

3) be positive definite. Then there is a β̃(n) such that

(54)
n∑

i=1

Ziψ̃n(
Yi −XT

i β̃
(n)

σ̂(n)
) = 0

and √
n
(
β̃(n) − β0

)
= Op(1) as n→∞.

Proof. Similarly as in the proof of Theorem 3, without loss of generality let us assume
that m = 1 (i. e. function ψ has only one discontinuity), r = 0, α2 − α1 = τ. First of all,
let us consider for ‖t‖ < M, |u| < M

n�
i=1

Zi � ψ(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u)− ψ̃(

|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u) � .

Since ψ(v) = ψ̃n(v) for |v| ≥ Kn−ϑ, the difference

ψ(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u)− ψ̃n(

|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u)

is nonzero only in the case when����
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u ���� < Kn−ϑ,

i. e. when

(55) −Kn−ϑσ−1
e1
e−n

− 1
2 u + n−

1
2XT

i t < ei < Kn−ϑσ−1
e1
e−n

− 1
2 u + n−

1
2XT

i t.

According to assumption of Theorem 3 there is J > 0 such that fei (v|Xi) < J. It means

that probability of the event (55), independently on Xi, is bounded by 2JKn−ϑ. For the
notational simplicity let Ii be the indicator of the set� ω : ψ(

|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u) 6= ψ̃n(

|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u) � .

Then

IE � Zi � ψ(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u)− ψ̃n(

|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u) �	�

= IE � Zi � ψ(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u)

−ψ̃n(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u) � Ii � < IE‖Zi‖ · τ · JKn−ϑ.
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It implies that for any ε > 0

P � �����
n−

1
2

n�
i=1

Zi � ψ(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u)

−ψ̃n(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u) � ���� > ε �

≤ ε−1n−
1
2

n�
i=1

IE‖Zi‖ · τ · JKn−ϑ = o(1) as n→∞.

Analogical way leads to

(56) n−
1
2

n�
i=1

Zi � ψ(eiσ
−1
e1

)− ψ̃n(eiσ
−1
e1

) � = op(1) as n→∞.

Applying (37) we obtain

sup
TM �����

n−
1
2

n�
i=1

Zi � ψ̃n(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u)− ψ̃n(eiσ

−1
e1

) � + qt+ γu �����≤ n− 1
2 sup
TM �����

n�
i=1

Zi � ψ̃n(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u)

−ψ(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u) � ����+n−

1
2 sup
TM �����

n�
i=1

Zi � ψ̃n(eiσ
−1
e1

)− ψ(eiσ
−1
e1

) � �����+ sup
TM ��� n−

1
2 Sn(t, u) + qt+ γu ��� = op (1) as n→∞.

Taking into account (56) once again we can easy find that

n−
1
2

n�
i=1

Ziψ̃n(
|
ei − n−

1
2XT

i t } σ−1
e1
e−n

− 1
2 u)

(57) = n−
1
2

n�
i=1

Ziψn(eiσ
−1
e1

)− qt− γu+ op(1) as n→∞

where q and γ correspond to ψ. Since the right hand sides of (52) and (57) are of the

same character, (57) in fact indicates that we may use the same idea which was used in

the proof of Theorem 4. 2

Theorem 5 allows us to give definition of instrumental M -estimator for
discontinuous ψ-function.

DEFINITION 1. Under instrumental M -estimator β̂(IM,K,n) for any dis-
continuous ψ-function we shall understand that solution of equation (54)
which was described in Theorem 5.

REMARK 7. Please notice that in some sense the construction which was
presented a few lines above and which was a justification of Definition 1,
also gives an idea how to find the instrumental M -estimator. Of course, in
the case when (54) has more solutions we have to choose one of them, sim-
ilarly as in the case when we obtain several solutions of (21). Mentioned
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construction (and namely the proof of the previous theorem) however indi-
cates even more. It is known (and after all, it is clear without any special
knowledge) that to find M -estimator generated by a discontinuous ψ-function
need not be very simple because it is sometimes (or even ususally) necessary
to solve directly corresponding extremal problem and not only an equation of
the type (21) which moreover need not have any solution, see e. g. Koenker
and Bassett (1978). From previous text however follows that we may find an
approximation to M -estimator generated by a ρ-function with discontinuous
ψ-function in a way which is used for finding M -estimators generated by con-
tinuous ψ-functions (see e. g. Antoch and Vı́̌sek (1991)), simply considering

a “continuous modification” ψ̃n of the function ψ. At this moment we are
not able to show generally (after all, this is not the goal of the paper) that this
approximation to the M -estimator has asymptotically the same properties as
the “precise” M -estimator.

On the other hand, for fixed n and for K → 0, the solutions of (54)
converge to solutions of (19) or (20). It supports a hope that for small K the
statistical properties of the approximation to “precise” M -estimator will be
similar to the properties of that “precise” M -estimator. Moreover, for some
ρ with discontinuous ψ we may guarantee that a solution of (19) exists and
gives solution of the corresponding extremal problem (18) (of course, if we
have more solutions of (19), then one of them is solution of (18) ), see Rubio
and Vı́̌sek (1996). Then, as the next corrolary shows, this solution has the
same asymptotic representation as “precise” M -estimator.

Similarly as above simple consequences of Theorem 5 (and of Definition
1) can be given as corollary.

COROLLARY 3. Let q (see Theorem 3) be a positive definite matrix and
σ̂(n) a

√
n-consistent estimate of σe1 . Then under assumptions of Theorem

5 we have

√
n
(
β̂(IM,K,n) − β0

)
= n−

1
2 q−1

n∑

i=1

Zi
{
ψ(eiσ

−1
e1 )− γ(logσ̂(n) − logσe1)

}

+op(1) as n→∞.
Moreover, if γ = 0

√
n
(
β̂(IM,n) − β0

)
is asymptotically normal with zero

mean and a covariance matrix C = q−1IE
{
ψ2(e1σ

−1
e1 )Z1Z

T
1

}
[q−1]T .

4. CONCLUSIONS

The results of paper demonstrated that the instrumental M -estimates
can be treated in a similar way as “ordinary” M -estimates and of course,
they have similar behaviour as M -estimates. It means that they are able to
cope with contamination of data in the same way as M estimators. In other
words, they easily overcome an influence of outliers, however somewhat more
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attention is necessary to pay to the situations when the diagonal elements
of hat matrix indicates that there are some leverage points. Then of course
instrumental M -estimates with (strongly) redescending ψ-function should be
used. By contrast with “ordinary” M -estimates they are able to cope with
the break of orthogonality condition, i. e. they give consistent estimate of
regression model also in the case when random fluctuations are correlated
with some explanatory variable(s).

Of course, similarly as in the least squares analysis we should have a
tool indicating whether the instrumental M -estimate should be used or the
“ordinary” M -estimate may suffices. Naturally, the latter estimator is easier
to apply and the result is more efficient then the result of the former one in
the case that this is appropriate, i. e. when fluctuations and regressors are
not correlated. We are aware that the next step is to be generalization of a
specification test, e. g. Hausman test. The forthcoming paper submitted to
the Prague Stochastics’98 will bring it, see Vı́̌sek (1998 b).

The paper brought also something more at two points. Firstly, it showed
that the idea of application of Ortega and Rheinboldt’s result in order to
achieve

√
n-consistency of M -estimators 9 can be also used for discontinuous

ψ-functions. So it simplifies and unifies the theory. Unfortunately the same
is not yet true about the proofs of asymptotic linearity of (instrumental) M -
statistics, where the case of discontinuous ψ-functions still requires Skorohod
embedding into Wiener process (the idea is due to Portnoy (1983), compare
also Jurečková and Sen (1989)).

Secondly, we have seen in the paper that an approximation to the M -
estimators with discontinuous ψ-functions can be found by the same way
as the estimators with the continuous ψ-functions. It may considerably
simplify their evaluation because the evaluation of M -estimates with con-
tinuous ψ-function can be based on the algorithms used for evaluation of
the least squares. Such algorithms have been thoroughly studied, carefully
implemented and innumerably used and hence they are quick and reliable.
Naturally, since the result is asymptotic and moreover it includes a free pa-
rameter (the constant K), it requires some numerical study to make an idea
about a real possibility to use this way.

5. Appendix

LEMMA A.1. (Štěpán (1987), page 420, VII.2.8) Let a and b be positive numbers.
Further let ξ be a random variable such that P (ξ = −a) = π and P (ξ = b) = 1− π (for a
π ∈ (0, 1)) and IEξ = 0. Moreover let τ be the time for the Wiener process W (s) to exit
the interval (−a, b).Then

ξ =D W (τ)

9The idea was used e. g. in Rubio and V́ı̌sek (1996) to prove
√
n-consistency of M-

estimators with continuous ψ-functions and is due to Jana Jurečková and Stephan Portnoy
(personal discussion).
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where “=D” denotes the equality of distributions of the corresponding random variables.
Moreover, IEτ = a · b = var ξ.

REMARK 8. Since the book of Štěpán (1987) is in Czech language we refer also to
Breiman (1968) where however this simple assertion is not isolated. Nevertheless, the
assertion can be found directly in the first lines of the proof of Proposition 13.7 (page
277) of Breinman’s book. (See also Theorem 13.6 on the page 276.)

We shall need however somewhat generalized version of previous lemma.

LEMMA A.2. Let a and b be positive numbers. Further let ξ be a random variable
defined on a probability space (Ω,A, P ) such that P (ξ = −a) = π1, P (ξ = b) = π2 and
P (ξ = 0) = π3, πj ∈ (0, 1) for j = 1, 2, 3 and π1 + π2 + π3 = 1. Moreover let IEξ = 0.

Finally, denoting A = {ω ∈ Ω : ξ(ω) = 0, put for ω ∈ A τ(ω) = 0 and for ω ∈ AC let τ
be the time for the Wiener process W (s) to exit the interval (−a, b).Then

ξ =D W (τ)

where “=D” denotes the equality of distributions of the corresponding random variables.
Moreover, IEτ = a · b · (1− π3) = var ξ.

Proof. Let us put Ω̃ = AC, Ã = AC ∩ A and P̃ (B) = π−1
3 P (B). Further let ξ̃ = ξ for

ω ∈ AC. Then P̃ (ξ̃ = −a) = π−1
3 · π1 and P̃ (ξ̃ = b) = π−1

3 · π2. Let finally τ̃ be the time

for the Wiener process W (s) to exit the interval (−a, b) and put for ω ∈ AC τ(ω) = τ̃(ω).

According to Lemma A.1 we have ξ̃ =D W (τ̃) and IEτ̃ = a · b = var ξ̃. Earlier than we

shall continue, let us realize that IEτ̃ = � ∞0 zf̃(z)dz = a · b where f̃(z) is a density of
distribution of τ̃ . Now, evidently ξ =D W (τ) because on the set A we have ξ = 0 = W (τ)

and IEτ = � ∞0 zf(z)dz = 0 · P (A) + � ∞0 zf̃(z)(1 − π3)dz = a · b · (1 − π3) = var ξ. 2

ASSERTION 1. Let U be an open, bounded set in Rp and assume that Q(z) : Ū ⊂
Rp → Rp (Ū is the closure of U) is continuous and satisfies (z − z0)TQ(z) ≥ 0 for some
z0 ∈ U and all z ∈ Ū \ U . Then the equation Q(z) = 0 has a solution in Ū .

For the proof see Ortega and Rheinboldt (1970) , assertion 6.3.4 on the page 163.

References
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[18] Jurečková J., Welsh A. H. (1990): Asymptotic relations between L- and M-estimators
in the linear model. Annals of the Institute of Statistical Mathematics, 42, 671–698.

[19] Kmenta J. (1986): Elements of Econometrics. New York: Macmillan Publishing
Company.

[20] Koenker R., Bassett G. (1978): Regression quantiles. Econometrica, 46, 33-50.
[21] Ortega J. M., Rheinboldt W. C. (1970): Iterative Solution of Nonlinear Equations in

Several Variables, New York and London: Academic Press.
[22] Portnoy S. (1983): Tightness of the sequence of empiric c.d.f. processes defined from

regression fractiles. In Robust and Nonlinear Time-Series Analysis (J. Franke, W.
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