Object-Oriented Implementation of Neural Networks

' ~ Ivo Vondrak, Ph.D
DepLofComputerScxence,TechmalUmmtyofOﬂmva
tr.17 listopadu, Ostrava - Poruba, 708 33, Czech Republic

ivo.vondrak@vsb.cz

Abstract - |
Both Object-Oriented Programming (OOP) and Artificial Neural Networks (ANN) have really huge
influence on the computer science. If the first one has changed approach in software design then the
second one has opened new possibilities in artificial intelligence both in theory and in practice. The
main aim of this paper is to demonstrate how these topics can be put together. It means how the OOP
can help to model and simulate neural networks in such a way that one need not to think about
impiementation and he/she can concentratc only on correct usage of theoretical bases.

Introduction
Almost all processes of making software packages can be considered as a process of modelling. It
means that the main objective of this procedure is to transfer real system under investigation into the
computer. There were developed a lot of methods and programming techniques how this goal can be
satisfied. Some of them prefer functional view on the reality, some of them deal mainly with the data
or logic representation. Object-Oriented approach enables to put both above mentioned principles into
one consistent environment. It means that it is possible to reincarnate real system into the computer
model. To expiain this claim the main pmpeﬂies of the OOP shouid be dcscribed as follows:

e OOPis pmgmnmmg with Abstract Data Types (ADT) what means an aggregation of related
-~ data elements together with all methods that may operate on that data type - class. An object is
then an instance of this class.

. OOP:sprogrmummgmrhInhemauce wheremhentametsthccmuonofancwdatatvpeasan
extension or specialization of an existing one.

. OOFP is programming with Polymorphism which represents the concept that the same message
can be interpreted in different ways by different receiving objects.

Hence, an object-oriented system can be described as a set of objects communicating with each other
to achieve some results. Each object can be thought of as a small virtual computer with its own state
(memory) and its own set of operations (instruction set). Computation is achieved by sending
messages to objects. When an obiject receives a message it determines whether it has an appropriate
operation, script. or method to allow it to respond to the message. The definition of the method
describes how the object will react upon receiving the message. In OOP terminology, we refer to the
collection of operations that define behaviour of an object as the profocol supported by the object. This
conccptisvexymrtotheconceptofthcANNpmdxgmwhmthenctsmcmtcdﬁomncurons
communicating with each other by the signals passed by connections (axons). How the neural net can
be reincarnated into compmer model will be described in the following chapiers.

Problem Decomposition - Analys:s |
An object-oriented solution to the problem should sunulate the objects in the real NN. SW objects
should be constructed to represent the neurons, the interconnections bctween them, the layers of the
connected neurons and the whole network (Fig. 1).

Connection

ADT
Interconnections

ADT
Neuron

Fig.1 Decomposition of the ANN into the objects

These approach enables to find four main absu?cl data types represented by the following classes:

class Neuron from which neurons will be created

class Connection for the purpose to connect two neurons

class Interconnections that represents the set (laver) of connections of the same type and
behaviour '

class NeuralNet

Furthermore, operations on these objects (created from the above mentioned classes) would represent
problem-domain tasks such as passing the signal, adaptation, self-organization, changing the topology
and so on.

Object-Oriented Design

Some important boundaries have been already established for the classes based on the analysis what
enables to define top-levei class structurc. The description of this structur reflects two basic types of
relationships - using and inheritance. The using relationships (represented by double line) are shown

on Fig.2,

Fig.2 Ciass structure - using relationships

Along the lines of these using relationships their cardinalities are aiso expressed. For example. cvery
neural net may contain # neurons, but every neuron is owned by exactly one neural net. This

ownership enables neural net to have direct access to the excitation state of the ncurons. On the other
hand the ownership defined by the branch neural net -> interconnections objects -> connections ->
pairs of neurons determines the topology of the ANN. Obviously modeis of ANN differ by various
types of neurons, connections, topology of layers and so on. It means that the classification solved by
the hicrarchies of all above mentioned classes (ADT) will be necessary.

Himrchy of Neurons
The explanation of the class hierarchy for neuron abstract data types will begin with the description of -
the general abstract model of the neuron (Fig.3).

Potential] Activation
Function

e

_ Fig.3 Abstract Neuron
This abstraction enables to define the abstract data type of the neuron as follows (presented code will
be Smalltatk oriented and only the important messages will be described):

class: Neuron
~ superclass: Object

data clements: ,
potential "inner potential®
state o "state of the excitation”
 threshold "threshold of the neuron”
name “name of the neuron, usually represented by number”

message protocol:
initialize: aName "initialization of the neuron and setting a2 name”
adjustPotential: aFloat "add an input signal to the potential of the neuron”
transfer “abstract method for the activation function”
getState : "retumns the state of the neuron™.

It is obvious that mainly the abstract method frassfer will be defined later in the hierarchy according
the type of the neuron. Its objective is to transfer input potential to the state of the excitation. If this
abstract neuron is tie base of the neuron's hierarchy then the whole hierarchy can be defined as
follows:

- Neuron
BinaryNeuron
BipolarNeuron
KohonenNeuron
RandomNeuron
SigmoidalNeuron
AdaptiveNeuron
IntervaiNeuron

Binary neuron is represented be the two state neuron {0,1} with the following activation function:

transfer -

potential > threshold . :
ifTrue: [state := |]
ifFalse: [state := 0]

The other neurons in tie hicrarchy reflect their properties, e.g. Kohonen neuron has implemented
linear activation function where the inner potential is directly transfered into the state of the
excitation. The subclasses based on the SigmoidalNeuron implement further data element lambda
that represents the slope of their sigmoidal activation function and error that contains contribution of
the neurorn to the total error given by the output layer of neural network. This approach permits to
impicment the Parameters Adapting Back-Propagation (PAB) for all parameters of the neuron. It
means that the class AdaptiveNeuron introduces new method adjust that can adapt neuron's threshold
and slope of sigmoid based on PAB principles. The last type of neuron represented by the class
IntervalNeuron implements the possibility to assign interval state of the excitation to the neuron via
its data clements minState and maxState.

Hierarchy of Connections
The connections between neurons are important not only because of the necessity to pass the signal
from one neuron to the second, but they represent the first level how the topology of neurons is
defined. This abstraction enables to define the basic class Connection as follows (again only main
methods will be described):

class: Connection
superclass: Object
data elements:)
Jirst “first neuron from the couple of the neurons”
second ’ “second neuron”
weight "weight of the interconnection”
message protocol:
initialize "initialization of the connection"
adjust: aFloat "adjust a weight”
passSignal "pass a signal from the first to the second neuron”

The method adjust simply updates old weight of the interconnection by the real value in this way:

adjust: aFloat
weight : = weight + aFloat

The signal is passed from the first neuron to the second one through method passSignal as follows:

passSignal
second adjustPotential: (weight * (first getState))

- The whole hierarchy is very simple and it contains the following two classes:

Connection
IntervalConnection

Hierarchy of Interconnections Classes
The set of connections defining the part or the whole neural network represents the second and higher
level of the topology definition. Again, each type of such set has its own abstract data type in the
hierarchy of interconnections that begins with the base abstract class Jnterconnections defined as

follows:

class: interconnections
superclass: Object
data clements:
' connections : "dynamic collection of the connections"”
message protocol: ’
initWeights "initialization of the weights of the connections”
adjust "adjust weights of interconnections”

passSignal "pass a signal between neurons®

add: aConnection B *add a connection"
remove: aConnection : “remove a connection from the collection”

Thewholcmcmmhyr@ﬂem:hcpamanupmpemaofvmmtypunfﬂwANN'smoddsmdms
sohredthroughmefollomngclasses

Interconnections

InterBAM

InterHopfield

InterMulti
Grossberg
InterBP _

InterBPInterval

Kohonen

As was mentioned before the base is represented by the abstract class /nterconnections that
implements message protocol for the whole hierarchy. The others implement concrete different
solutions for the methods adjust and passSignal. Furthermore, they introduce class methods
responsibie for the correct creation of the object with the appropriate connections. Passing the s:gnal
is similar for all classes in hicrarchy and it can be solved by this code:

passSignal
"Pass signal through interconnections.*
| neuron |
connections do: [:con | “scan the connections"”
neuron := con getSecond. *bind the second neuron”
neuron initPotential. *init its potential”
connections do: [:con | “set potential by passing the signal”
(con getSecond) = neuron
ifTrue: [
con passSignal
7
1 -
neuron transfer "set state of the neuron”
J :

Origin method is a little bit complicated because of the necessity to update each neuron only once
while the previous code updates neurons several times and therefore the algorithm becomes
inefficient. In spite of the preseated algorithm that is similar for all classes the method adjust
(responsible for the adaptation of the interconnections) differs through the hierarchy. In this paper
only one example of the method that implements well-known back-propagation will be described as
follows:

adjust .
“Adjust interconnections.”
| xxi d deita lambdal| . _
connections do: [:con | "scan all connections"
x := con getSecond gdS:are. '
xi = con getFirst getState.
- d := con getSecond getError.
- lambda : = con getSecond getSiope.
delta := -1 *learningRate *d * (x * (I - x)) * lambda * xi.
con adjust: delta. “adjust old weight”

Artificial Neural Networks
Class hierarchy of the ANN models is based onprewouslydeﬁnedclassesofmtemonnemons It
mmthatlayersofmtermmecuonsareputtogethertodeﬁnethetopologyofneua!networks. The
abstract class MNeuralNet that creates thebegmmngofﬂsehxemrchyofnets is defined in the following

way:
class: NeuralNet

superclass: Object
data elements:
inter *dynamic collection of the interconnections®
message protocol: -
initNet ' “initialization of the necural net”
learning: alrainingSet "adaptation of the network”
run: aninput “recall the information"

The classes for many types of ANNs are derived from this abstraction. Thehnenrchyownsthese
abstract data types that implement various paradigms:

NeuralNet

BAM

RandomBAM
HopfieldNet

BoltzmanMachine
MultiLaveredNet ‘ ')

’ BPNet ' .
PABNet
IntervalPABNet

KohonenMap

CounterPropagNet

All object - neural networks - created from these classes provide management for sending messages
between interconnection objects. For example CounterPropagiNet consists of two objects: Kohonen
and Grossberg layers that enable to implement the algorithm of Counter-Propagation, but there is no
restriction to exchange the Grossberg layer by the Back-Propagation layer or by the PAB. This
 modularity is solved by the distribution of the responsibility for an adaptation and passing a signal to
the appropriate objccts. It means to adapt whole neural net means to adapt all interconnection objects
and their adaptation is solved through connections that define them. Recalling of the information is
implemented similarly. Unfortunately the source code for these classes is too large and it exceeds the

possibilities of this paper.

Conclusions

Object-Oriented Programming becomes very effective tool for the software design and implementation

in various fields of the human activity. The ANNs are not exception. Described class hicrarchies show

the main advantages of this approach, e.g. the direct reincarnation of the real nets into the computer

model and the possibilities to reuse already written code. For exampie implementation of the interval

based multi-layered network took approximately 30 minutes. Of course it is still possible to redefine or

to extend hierarchies and adapt them for the solution of the concrete problem. It is possible to say that
 the reliability of the code is much higher than in case of some standard programming technology.

This is solved mainly via above mentioned principle of the distributed responsibility in the

information processing.

References

Vondrdk I.: ~ Object - Oriented Approach to the Neural Networks. Preprint, Institute of
v . Mathematics , University of Leoben, Austria, 1992
Vondrak I.: Object - Oriented Design of Artificial Neural Networks, NEURONET'93,
International Scientific Conference. Prague, Czech Republ:c. 1993

