Změnaný lineární model je všeobecně uváděný v literatuře v nasledujícím tvaru:

\[Y = X\beta + U_1 \xi_1 + \ldots + U_p \xi_p + \epsilon, \]

kde \(Y \) je \(n \)-rozmerný vektor pozorování,
\(\beta \) je \(k \)-rozmerný neznámý vektorový parameter,
\(\xi_i \), \(i = 1, \ldots, p-1 \) jsou \(n \)-rozmerné náhodné vektory (náhodné efekty), které splňují předpoklad
\(E(\xi_i) = 0, \quad E(\xi_i \xi') = \sigma_i^2 I, \quad i = 1, \ldots, p-1 \)
\(\epsilon \) je \(n \)-rozmerný vektor chyb, který platí rovnaké \(E(\epsilon) = 0, \quad E(\epsilon \epsilon') = \sigma_p^2 I \).

Matici \(X, U_1, \ldots, U_p \) sú známé náhodné matice a \(\sigma_i, i = 1, \ldots, p \) jsou známé konstantní parametry. Všeobecněž

to je model s variantní - Kovariantními komponentami v tvaru

\[(1) \quad (Y, X\beta, \Sigma \Theta V), \quad \text{příčom} \]

cílej je odhadnout lineární funkci parametru \(\Theta = (\theta_1, \ldots, \theta_p)' \):

\[f(\Theta) = f'(\theta) = \sum_{i=1}^{p} f_i(\theta_i). \]

Zaujímavý je případ založený na lineárním modeli v závislosti premennej vec \(Y'Y' \)- vektoru vytvorením zo stĺpcov symetriečnej matice \(YY' \) ich usporiadaní pod seba. (Pozri napr. Verdooren (1979, 1988)).

Model má tvar:

\[(2) \quad E(\text{vec } YY') = (X\Theta, \text{vec } V, \ldots, \text{vec } V), \quad \text{vec } (\beta \beta') = Z\xi, \]

\[\begin{pmatrix}
\theta_1 \\
\vdots \\
\theta_p
\end{pmatrix} \]

Operácia "e" je kroneckého súčinu matic; maticu \(Z \) je známa maticu typu \(k \times (k^2 + p) \). Parameter \(\xi \) je \(k^2 + p \)-rozmerný, kde vec \(\beta \beta' \) považujeme za rušivý. Kdežde odhadujeme lineární funkci parametru druhého rádu, je prirodzené požadovat, aby odhad bol invariantný vzhľadom na posun v strednej hodnote. Odhad \(TC(Y) \) je invariantný práve vtedy, keď \(TC(Y) = TC(Y + \beta \beta') \) pre všetky \(\beta \in \mathbb{R}^k \). Maximálnym invariantom, tj. štatistika založená na vektore \(Y \) je vektor \(MV, \) kde \(M = I - P_X \) je projektor na ortogonálny komplement stĺpového priestoru matice \(X, \)

\[P_X = XX'X'^{-1}X'. \]

Vytvoríme transformovaný model, založený na vektore \(MV MV' \) v tvar:

\[(3) \quad E(\text{vec } MV MV') = (\text{vec } MV MV', \ldots, \text{vec } MV MV') \Theta = Z\xi. \]

V modeli (3) sa strata závislosti na rušivom parametri vec \(\beta \beta' \). Odhady založené na vektor \(MV MV' \) sú invariantné. Z teórie lineárních modelov je známe, že nutná a postačujúca podmienka pre nevychýlenú odhadnoseť funkcie \(f' \beta \) je \(f \epsilon IRC(Q'O.Q), \) kde \(IRC \) je stĺpový priestor matice \(Q'O. \)

\[Q'O = \text{tr } MV MV', \] je totožné s nutnou a postačujúcou podmienkou pre nevychýlenú invariantnú a kvadratickú odhadnoseť funkcie \(f' \Theta. \)

Nevychýleny a invariantný MNS odhad má tvar:

\[(4) \quad f'(\Theta) = f'(Q'O.Q)^{-1}Q'O MV MV' \]

\[= \sum_{i=1}^{p} f_i(Y' Y'MV MV', kde Q'O_x = f_i. \]
Odhad (4) vo všeobecnosti nemá žiadne vlastnosti optimality (v zmysle minimálnej disperzie) je však veľmi jednoduchý vzhľadom na vypočtovú náročnosť a nezávisí od vopred zvolenej hodnoty neznáho parametra \(\theta \) tak, ako odhad typu MINQUE.

MINQUE odhad (Minimum Norm Quadratic Unbiased Estimator), ktorý je invariantný, je pre MINQUE-odhadnuté \(\hat{f} \) tvaru:

\[
\hat{f} = \sum_{i=1}^{p} V_i^y (M_i V_i^y)^+ Y_i^y
\]

kde \(V = V(\hat{\theta}) = \sum_{i=1}^{p} \theta_i Y_i^2 \) pre vopred zvolenú hodnotu \(\hat{\theta} = (\hat{\theta}_0, \ldots, \hat{\theta}_0) \) a "+" je Moore-Penroseova inverzia matice. Zároveň platí, funkcia \(f(\hat{\theta}) \) je MINQUE odhadnutá práve vtedy, ak \(f(\hat{\theta}) = \hat{f} \).

Odhady (4) a (5) sú oba nevyhýlené a invariantné, zároveň odhad (5) je v prípade normálneho rozdelenia vektora \(Y \) lokálny najlepší v bode \(\hat{\theta} \).

Okrem predchádzajúcich dvoch Štulajter (1989) navrhový prístup k odvodzovaniu odhadu. Utvoril najprv MNS- odhad parametrov \(\beta
\begin{align*}
\hat{\beta} &= (X'X)^{-1}X'Y \quad \text{a na základe } \hat{\beta} \text{ položil} \\
(6) \quad V &= (Y - X(\hat{\beta}(Y - X))' \\
\text{teda } V \text{ je "prirodzený" odhad celej kovariančnej matice } V(\hat{\theta}). \quad \text{Struktúra kovariančnej matice } V(\hat{\theta}) \text{ je však známa, preto je prirodzené za odhad } V(\hat{\theta}) \text{ považovať projekciu mati-} \\
\text{ce } V \text{ do lineárneho priestoru}
\end{align*}

Obr. 1. Model, odhadovaný parameter \(\theta = 0.81 \), normálne rozdelenie.

Obr. 2. Model, odhadovaný parameter \(\theta = 0.81 \), transformované Studentovo rozdelenie.

Obr. 3. Model, odhadovaný parameter \(\theta = 0.81 \), transformované gama rozdelenie.
vytvoreného množinou

\(Y = (V(0), \Theta \in \Theta) \). Z uvedené

\[p \]
\(f'\Theta = \Sigma a_i V'M_i H_i, \) kde
\(i \)
\(a = f, \) pričom \(G_{ij} = tr V_i H_j. \)

Odhad \(p \) na rozdiel od

odhadov \(q \) odhadov \(r \) nie je ne-

vychýlený, len invariantný. V

špeciálnom prípade, keď matri-

ci \(V \) sú navzájom ortogonálné

Štulajter dokázal konzisten-

ciu odhadu \(p \).

Je prirodzené položiť

si otázku, ako sa tieto od-

hady \(q \), \(r \) a \(p \) chovajú

navzájom, aké majú štatistic-

ké vlastnosti, vzhľadom na

jednoduchosť výpočtov odhadov

\(q \) a \(p \).

V našej simulačnej štú-

dí sme porovnali uvedené od-

hady v nasledujúcich situá-

ciách. V dvoch rôznych mode-

loch sa simulovalo 10 000 re-

alizácií vektora \(Y \) pre nor-

mále rozdeľenie, transformo-

vané Studentovo a gama rozde-

lenie s parametrami:

1. MODEL

\[Y = X_\beta + U_{1,1} + U_{1,2} + \varepsilon , \]

kde \(Y \) je \(n=24 \) -rozmerový vektor,

máčie \(X_{24x1}, \) \(U_{1,2} \) a vektor \(\beta_{1,2} \) sú

dane. Skutočná hodnota param-

etra \(\Theta \) použitá pri gene-

rovaní je \(\Theta = (0,81,0,64,0,36)' \).

Pre generované vektory

\(\xi_{1,2} \), \(\zeta_{2,3} \), \(\varepsilon (24) \) platí:

\(E(\xi_1) = 0, i=1,2; \) \(E(\varepsilon) = 0, \)

\(\text{Var}(\xi_1) = \Theta I \) \(i=1,2 \) \(\text{Var}(\varepsilon) = \Theta. \)

2. MODEL

\[Y = X_\beta + \Sigma_{i=1}^{p-1} U_{i,1} + \varepsilon , \]

kde \(Y \) je \(n=12 \) -rozmerový vektor,

máčie \(X_{24x1}, \) \(U_{1,2} \) a

vektor \(\beta_{1,2} \) sú dane, pričom

\(n_1 = 2, n_2 = 3, n_3 = 4, n_4 = 5, n_5 = 6. \)

Skutočná hodnota para-
metra \(\theta \) pre generovanie je \(6 = (0.25, 0.81, 1.0, 0.49, 0.36, 0.09) \). Pre generované vektory \(\varepsilon_{\text{im}} \), platí:
\[
E(\varepsilon_i) = 0, \text{Var}(\varepsilon_i) = \sigma^2 \quad i = 1, \ldots, 5 \quad \text{a pre} \quad \varepsilon \text{ platí}
\]
\[
E(\varepsilon) = 0, \text{Var}(\varepsilon) = \sigma^2.
\]

Na obrázkoch 1. – 12. jsou znázorněny polygony pro jednotlivé odhady: MINEQ, MNS, MNSS je odhad navrhnutý Studenajterom. Vo vašej prípadovej práci, okrem obr. 7. – 9. sa ukázalo, že napríek výchylenejším MNSS odhad má výrazne menších strednú kvadratickú chybu (MSE) než MINEQ a MNS-odhad, ktoré sú nevychýlené. Vo všeobecnosti rozdielenej MINEQ ani iných kvadratických odhadov nie je známe, len v niektorých špeciálnych prípadoch a za predpokladu normality vektoru \(Y \). Z obrázkov je možné vidieť, že rozdielenie MINEQ a MNS sú si blízke v zmysle podobnosti polygónov.

Ukázalo sa tiež, že rozdielenie odhadov sú si blízke v uvedenom zmysle aj pre rovné typy rozdielenia (symetrické, napr. Studentovo aj nesymetrické, napr. gama rozdielenie).

V tabuľkách 1. – 3. sú uvádzané výberové priemery, disperzie a stredná kvadratická chyba odhadov parametrov \(\theta_1, \theta_2 \) a \(\theta_3 \). V tabuľke 4 je to isté pre odhad funkcie \(f(\theta) = e^{\theta} \), \(\theta = 3.0 \).

Ako uzáver je možné povedať, že v situáciách, kde vypočítaná náročnosť MINEQ odhady je veľká (výpočet matice \(MVHD^+ \)), je lepšie uprednostniť MNS alebo MNSS odhad, a to v závislosti od typu úlohy.
najmě v případě odhadu lineárnej funkcie parametra θ.

LITERATÚRA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rozdelenie</th>
<th>Odhad</th>
<th>Priemer</th>
<th>Disperzia</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normálne</td>
<td>MINQUE</td>
<td>0.8198</td>
<td>0.99417</td>
<td>0.4913</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNS</td>
<td>0.8127</td>
<td>1.5580</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNSS</td>
<td>0.1732</td>
<td>0.0858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studentovo</td>
<td>MINQUE</td>
<td>0.8027</td>
<td>20.0972</td>
<td>1.1827</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNS</td>
<td>0.7630</td>
<td>13.3103</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNSS</td>
<td>0.1613</td>
<td>0.7419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gama</td>
<td>MINQUE</td>
<td>0.8115</td>
<td>4.0910</td>
<td>0.8030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNS</td>
<td>0.9084</td>
<td>7.1408</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNSS</td>
<td>0.1717</td>
<td>0.3956</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rozdelenie</th>
<th>Odhad</th>
<th>Priemer</th>
<th>Disperzia</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normálne</td>
<td>MINQUE</td>
<td>0.6454</td>
<td>0.3736</td>
<td>0.4304</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNS</td>
<td>0.6562</td>
<td>0.9082</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNSS</td>
<td>0.0819</td>
<td>0.1189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studentovo</td>
<td>MINQUE</td>
<td>0.6309</td>
<td>0.9142</td>
<td>1.2337</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNS</td>
<td>0.6240</td>
<td>1.9894</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNSS</td>
<td>0.0867</td>
<td>0.9050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gama</td>
<td>MINQUE</td>
<td>0.6250</td>
<td>0.9547</td>
<td>0.6268</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNS</td>
<td>0.6357</td>
<td>1.6542</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNSS</td>
<td>0.0762</td>
<td>0.3089</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rozdelenie</th>
<th>Odhad</th>
<th>Priemer</th>
<th>Disperzia</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normálne</td>
<td>MINQUE</td>
<td>0.3571</td>
<td>0.0191</td>
<td>0.4174</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNS</td>
<td>0.3581</td>
<td>0.1425</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNSS</td>
<td>0.7029</td>
<td>0.2300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studentovo</td>
<td>MINQUE</td>
<td>0.3573</td>
<td>0.0508</td>
<td>4.3214</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNS</td>
<td>0.3578</td>
<td>0.1894</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNSS</td>
<td>0.7883</td>
<td>4.1380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gama</td>
<td>MINQUE</td>
<td>0.3642</td>
<td>0.0662</td>
<td>1.4828</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNS</td>
<td>0.3675</td>
<td>0.2026</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNSS</td>
<td>0.8100</td>
<td>1.2803</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rozdelenie</th>
<th>Odhad</th>
<th>Priemer</th>
<th>Disperzia</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normálne</td>
<td>MINQUE</td>
<td>3.0082</td>
<td>5.7118</td>
<td>3.7999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNS</td>
<td>3.0288</td>
<td>8.9197</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNSS</td>
<td>1.4540</td>
<td>1.4098</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studentovo</td>
<td>MINQUE</td>
<td>2.9555</td>
<td>10.8645</td>
<td>5.8600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNS</td>
<td>2.9474</td>
<td>13.2648</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNSS</td>
<td>1.4075</td>
<td>3.3239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gama</td>
<td>MINQUE</td>
<td>2.9918</td>
<td>11.3257</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNS</td>
<td>2.9698</td>
<td>14.0818</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNSS</td>
<td>1.4339</td>
<td>2.6078</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 4.

Adresa: Ústav merania a meracej techniky SAV, Dúbravská 9, 84219 Bratislava